Skip to main content
Log in

Microperoxidase-11/NH2-FSM16 as a H2O2-resistant heterogeneous nanobiocatalyst: a suicide-inactivation study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The catalytic activity of heme peptides is an area of intense investigation. They are utilized for exploring the fine details of structural and functional properties of an active site, and to create minimized and industrial catalysts. The peroxidase activity and kinetics of suicide-inactivation of microperoxidase-11/FSM16 as a heterogeneous nanobiocatalyst in oxidation reaction of guaiacol were studied in the presence of high concentration of hydrogen peroxide (2 mM), as its natural suicide-substrate. The substrate concentration was first-order in relation to aromatic substrate (AH), and the ratio of suicide-substrate (H2O2) was kept much higher than the benign substrate (guaiacol). The results of kinetic analysis confirmed a similar mechanism for suicide-peroxide inactivation of horseradish peroxidase (HRP), microperoxidase (MP-11) and MP-11/NH2-FSM16. Inactivation kinetic parameters, including intact activity of MP-11/NH2-FSM16, αi, and the apparent inactivation rate constant (k i) were obtained as 0.229 ± 0.009 min−1 and 0.651 ± 0.041 min−1 at [H2O2] = 2.0 mM, respectively, in 5.0 mM phosphate buffer solution (PBS; pH 7.0) at 27 °C. Our results indicated that covalent immobilization of microperoxidase onto NH2-FSM16 protected the heme group against peroxide inactivation resulting in generation of an efficient peroxide-resistant heterogeneous nanobiocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Nicolis, L. Casella, R. Roncone, C. Dallacosta, E. Monzani, C. R. Chim. 10, 380 (2007)

    Article  CAS  Google Scholar 

  2. S. Colonna, N. Gaggero, C. Richelmi, P. Pasta, Trends Biotechnol. 17, 163 (1999)

    Article  CAS  Google Scholar 

  3. K. Nazari, N. Esmaeili, A. Mahmoudi, H. Rahimi, A.A. Moosavi-Movahedi, Enzym. Microb. Technol. 41, 226 (2007)

    Article  CAS  Google Scholar 

  4. J.H. Spee, M.G. Boersma, C. Veeger, B. Samyn, J. Van Beeumen, G. Warmerdam, G.W. Canters, W.M.A.M. Van Dongen, I.M.C.M. Rietjens, Eur. J. Biochem. 241, 215 (1996)

    Article  CAS  Google Scholar 

  5. N.H. Kim, M.S. Jeong, S.Y. Choi, J.H. Kang, Bull. Korean Chem. Soc. 25, 1889 (2004)

    Article  CAS  Google Scholar 

  6. S. Prasad, N.C. Maiti, S. Mazumdar, S. Mitra, Biochim. Biophys. Acta 1596, 63 (2002)

    Article  CAS  Google Scholar 

  7. R. Mondelli, L. Scaglioni, S. Mazzini, G. Bolis, G. Ranghino, Magn. Reson. Chem. 38, 229 (2000)

    Article  CAS  Google Scholar 

  8. H.M. Marques, Dalton Trans 39, 4371 (2007)

    Article  Google Scholar 

  9. M.B. Arnao, M. Acosta, J.A. DelRio, R. Varon, F. Garcia-Canovas, Biochim. Biophys. Acta 1041, 43 (1990)

    Article  CAS  Google Scholar 

  10. H.C. Chang, R.D. Holland, J.A. Bumpus, M.I. Churchwell, D.R. Doerge, Chem. Biol. Interact. 123, 197 (1999)

    Article  CAS  Google Scholar 

  11. R.L. Divi, D.R. Doerge, Biochemistry 33, 9668 (1994)

    Article  CAS  Google Scholar 

  12. D.R. Doerge, C.J. Decker, R.S. Takazawa, Biochemistry 32, 58 (1993)

    Article  CAS  Google Scholar 

  13. M. Ghadermarzi, A.A. Moosavi-Movahedi, Ital. J. Biochem. 46, 197 (1997)

    CAS  Google Scholar 

  14. M. Khosraneh, A. Mahmoudi, H. Rahimi, K. Nazari, A.A. Moosavi-Movahedi, J. Enzym. Inhib. Med. Chem. 22, 677 (2007)

    Article  CAS  Google Scholar 

  15. B. Mohajerani, K. Nazari, A. Mahmoudi, A.A. Moosavi-Movahedi, J. Mol. Catal. A. Chem. 296, 28 (2008)

    Article  CAS  Google Scholar 

  16. N.Z. Logar, V. Venčeslav Kaučič, Acta Chim. Slov. 53, 117 (2006)

    CAS  Google Scholar 

  17. Z. Dai, X. Xu, L. Wu, H. Ju, Electroanalysis 17, 1571 (2005)

    Article  CAS  Google Scholar 

  18. A. Kamyshny, T. Reuveni, S. Magdassi, J. Colloid Interface Sci. 181, 470 (1996)

    Article  CAS  Google Scholar 

  19. Sadjadi, N. Farhadyar, K. Zare, Superlattices Microstruct. 46, 77 (2009)

  20. Thomsen, B. Nidetzky, Biotechnol. J. 4 98 (2009)

  21. A.J.J. Straathof, P. Adlercreutz, Applied Biocatalysis (CRC Press, USA, 2000) p 295

  22. E. Katchalski-Katzir, D.M. Kraemer, C. Eupergit, J. Mol. Catal. B. Enzym. 10, 157 (2000)

    Article  CAS  Google Scholar 

  23. A.K. Cheetham, G. Ferey, T. Loiseau, Angew. Chem. Int. Ed. 38, 3269 (1999)

    Article  Google Scholar 

  24. R.A. Sheldon, Adv. Synth. Catal. 349, 1289 (2007)

    Article  CAS  Google Scholar 

  25. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  26. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  27. J.M. Thomas, R. Raja, Annu. Rev. Mater. Res. 35, 315 (2005)

    Article  CAS  Google Scholar 

  28. J.M. Thomas, R. Raja, D.W. Lewis, Angew. Chem. Int. Ed. 44, 6456 (2005)

    Article  CAS  Google Scholar 

  29. F. Schuith, E, Annu. Rev. Mater. Res. 35, 209 (2005)

    Article  Google Scholar 

  30. P. Brodelius, Immobilized cells and enzymes: a practical approach (IRL Press, Oxford, 1985) p 137

  31. P.J. Worsfold, Pure Appl. Chem. 67, 597 (1995)

    Article  CAS  Google Scholar 

  32. A. Subramanian, S.J. Kennel, P.I. Oden, K.B. Jacobson, J. Woodward, M.J. Doktycz, Enzyme Microb. Technol. 24, 26 (1999)

    Article  CAS  Google Scholar 

  33. X.S. Zhao, X.Y. Bao, W. Guo, F.Y. Lee, Mater. Today 9, 32 (2006)

    Article  CAS  Google Scholar 

  34. D. Olea, O. Viratelle, C. Faure, Biosens. Bioelectron. 23, 788 (2008)

    Article  CAS  Google Scholar 

  35. S. Jaenicke, X.S. Zhao, Catal. Today 96, 91 (2004)

    Article  CAS  Google Scholar 

  36. Y.X. Zhao, L.P. Xu, Y.Z. Wang, C.G. Gao, D.S. Liu, Catal. Today 93–95, 583 (2004)

    Article  Google Scholar 

  37. H.H.P. Yiu, P.A. Wright, N.P. Botting, Microporous Mesoporous Mater. 44, 763 (2001)

    Article  Google Scholar 

  38. A. Dyal, K. Loos, M. Noto, S.W. Chang, C. Spagnoli, K.V.P.M. Shafi, A. Ulman, M. Cowman, R.A. Gross, J. Am. Chem. Soc. 125, 1684 (2003)

    Article  CAS  Google Scholar 

  39. T. Konno, J. Watanabe, K. Ishihara, Biomacromolecules 5, 342 (2004)

    Article  CAS  Google Scholar 

  40. M. Koneracka, P. Kopcansky, M. Timko, C.N. Ramchand, A. de Sequeira, M. Trevan, J. Mol. Catal. B. Enzym. 18, 13 (2002)

    Article  CAS  Google Scholar 

  41. H. Yang, G. Zhang, X. Hong, Y. Zhu, Microporous Mesoporous Mater. 68, 119 (2004)

    Article  CAS  Google Scholar 

  42. C. Yang, Chin. Chem. Lett. 14, 96 (2003)

    CAS  Google Scholar 

  43. J.M. Kisler, G.W. Stevens, A.J. O’Connor, Mater.Phys.Mech. 4, 89 (2001)

    CAS  Google Scholar 

  44. A. Petri, T. Gambicorti, P. Salvadori, J. Mol. Catal. B. Enzym. 27, 103 (2004)

    Article  CAS  Google Scholar 

  45. J. Yang, A. Daehler, G.W. Stevens, A.J. O’Connor, Stud. Surf. Sci. Catal. 146, 775 (2003)

    Article  CAS  Google Scholar 

  46. H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Microporous Mesoporous Mater. 44, 755–762 (2001)

    Article  Google Scholar 

  47. S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, K. Kuroda, Bull. Chem. Soc. Jpn. 69, 1449 (1996)

    Article  CAS  Google Scholar 

  48. A. Taguchi, F. Schuth, Microporous Mesoporous Mater. 77, 1 (2005)

    Article  CAS  Google Scholar 

  49. K.J. Reszka, Y. O’Malley, M.L. McCormick, G.M. Denning, B.E. Britigan, Free Radical Biol. Med. 36, 1448 (2004)

    Article  CAS  Google Scholar 

  50. K.J. Reszka, M.L. McCormick, B.E. Britigan, Free Radical Biol. Med. 35, 78 (2003)

    Article  CAS  Google Scholar 

  51. D. Kumar, S.P. de Visser, S. Shaik, J. Am. Chem. Soc. 127, 8204 (2005)

    Article  CAS  Google Scholar 

  52. C. Dallacosta, L. Casella, E. Monzani, ChemBioChem 5, 1692 (2004)

    Article  CAS  Google Scholar 

  53. L. Casella, L. De Gioia, G.F. Silvestri, E. Monzani, C. Redaelli, R. Roncone, L. Santagostini, J. Inorg. Biochem. 79, 310 (2000)

    Article  Google Scholar 

  54. A.N.P. Hiner, J.N. Rodriguez-Lopez, M.B. Arnao, E.L. Raven, F. Garcia-Canovas, M. Acosta, Biochem. J. 348, 321 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of Research Council of the University of Tehran and Iran National Science Foundation (INSF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Moosavi-Movahedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sefidbakht, Y., Nazari, K., Farivar, F. et al. Microperoxidase-11/NH2-FSM16 as a H2O2-resistant heterogeneous nanobiocatalyst: a suicide-inactivation study. J IRAN CHEM SOC 9, 121–128 (2012). https://doi.org/10.1007/s13738-011-0040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-011-0040-9

Keywords

Navigation