Skip to main content
Log in

Nanosteel synthesis via arc discharge: media and current effects

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Size, purity, yield, and morphology of arc-synthesized nanosteel particles are altered by the employed currents (50, 80, and 100 A/cm2), as well as the media [nitrogen, open air, ethylene glycol, and distilled water saturated with polyvinylpyrrolidone (PVP)]. Nanoparticles (Nps) produced at 80 A/cm2 in distilled water, PVP-saturated distilled water, and ethylene glycol are on average five times smaller than those synthesized in nitrogen and open air. This is attributed to the capping as well as stabilizing effects of the liquid media. Changing current from 50 to 80 A/cm2 results in a decrease of Nps sizes in the liquid media, and a size increase in the gaseous media, which suffer from the lack of grain growth and particle aggregation prohibitor agents. SEM images and XRD profiles show the purest nanosteel particles formed in nitrogen, with an average size of 29 nm at 50 A/cm2. Nps with relatively smaller size (7 nm) are obtained in distilled water at 100 A/cm2, as a mixture of nanosteel and nano Fe3O4 particles. Yet, comparatively the highest amounts of the latter are formed in the open air at 80 A/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Kulik, J. Non-cryst. Solid. 1, 145 (2001)

    Article  Google Scholar 

  2. J. Nagahora, K. Kita, K. Ohtera, Mater. Sci. Forum 304, 825 (1999)

    Article  Google Scholar 

  3. Z.B. Wang, X.P. Yong, N.R. Tao, S. Li, Acta Metall. Sinica. 37, 1251 (2001)

    CAS  Google Scholar 

  4. X.Y. Wang, Mater. Sci. Forum 255, 839 (2003)

    Google Scholar 

  5. O.E. Kedim, M. Tachikart, E. Gaffet, Mater. Sci. Forum 255, 825 (1996)

    Article  Google Scholar 

  6. J. Bhattarai, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci. 40, 757 (1998)

    Article  CAS  Google Scholar 

  7. M. Mehmood, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci. 41, 477 (1999)

    Article  CAS  Google Scholar 

  8. R.B. Inturirb, Z. Szklarskasmialowska, Corros. Sci. 48, 398 (1992)

    Article  Google Scholar 

  9. X. Song, S. Sun, W. Zhang, Z. Yin, J. Colloid Interface Sci. 273, 463 (2004)

    Article  CAS  Google Scholar 

  10. The Nanosteel Company. Nanosteels RADAC, http://www.nanosteelco.com

  11. J. Yang, J. Lian, Q. Dong, Z. Guo, Appl. Surf. Sci. 229, 2 (2004)

    Article  CAS  Google Scholar 

  12. M.M. Cisneros, H.F. Lopez, H. Mancha, D. Vazquez, E. Valdes, G. Mendoza, M. Mendez, Metall. Mater. Trans. A 33, 2139 (2002)

    Article  Google Scholar 

  13. R.L. Klueh, N. Hashimoto, P.J. Maziasz, Scr. Mater. 53, 275 (2005)

    Article  CAS  Google Scholar 

  14. D.J. Branagan, I. Falls, patent No: US 2005/0252586 A1

  15. V.V. Lepov, A.M. Ivanov, B.A. Loginov, V.A. Bespalov, V.S. Achikasova, R.R. Zakirov, V.B. Loginov, Nanotechnol. Russ. 9, 734 (2008)

    Article  Google Scholar 

  16. Y. Lin, J. Lu, L. Wang, T. Xu, Q. Xue, Acta Mater. 54, 5599 (2006)

    Article  CAS  Google Scholar 

  17. N. Tsuji, R. Ueji, Y. Minamino, Y. Saito, Scr. Mater. 46, 305 (2002)

    Article  CAS  Google Scholar 

  18. D.R. Lesuer, C.K. Syna, O.D. Sherby, Mater. Sci. Eng. A 410–411, 222 (2005)

    Google Scholar 

  19. R.J. Munz, T. Addona, A.-C. da Cruz, Pure Appl. Chem. 71, 1889 (1999)

    Article  CAS  Google Scholar 

  20. J. Chen, G. Lu, L. Zhu, R.C. Flagan, J. Nanopart. Res. 9, 203 (2007)

    Article  Google Scholar 

  21. M.Z. Kassaee, E. Motamedi, M. Majdi, A. Cheshmehkani, S. Soleimani-Amiri, F. Buazar, J. Alloy Compd. 453, 229 (2008)

    Article  CAS  Google Scholar 

  22. M.Z. Kassaee, M. Ghavami, E. Motamedi, Asian J. Chem. 1, 677 (2008)

    Google Scholar 

  23. M.Z. Kassaee, F. Buazar, J. Manuf. Process. 11, 31 (2009)

    Article  Google Scholar 

  24. M.Z. Kassaee, S. Soleimani-Amiri, F. Buazar, J. Manuf. Process. 12, 85 (2010)

    Article  Google Scholar 

  25. M.Z. Kassaee, F. Buazar, E. Motamedi, J. Nanomaterials (2010). doi:10.1155/2010/403197

  26. B. Yin, H. Ma, S. Wang, S. Chen, J. Phys. Chem. B 107, 8898 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kassaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buazar, F., Cheshmehkani, A. & Kassaee, M.Z. Nanosteel synthesis via arc discharge: media and current effects. J IRAN CHEM SOC 9, 151–156 (2012). https://doi.org/10.1007/s13738-011-0038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-011-0038-3

Keywords

Navigation