Skip to main content
Log in

QSPR study of charge–transfer complexes of some organic donors with p-chloranil using PLSR and MLR

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A quantitative structure–property relationship (QSPR) study was conducted to develop models to relate the structure of 46 donor compounds to their charge–transfer complex formation constants with chloranil for the first time. Donors were a diverse set of organic compounds having different functional groups. QSPR models were calculated using multiple linear regressions (MLR) and partial least squares regression (PLSR) to predict charge–transfer complex formation constants. Some important descriptors in charge–transfer complex formation were calculated and added to the descriptors taken from DRAGON software. After a reduction step using variable importance in projection, stepwise regression was employed to select the most relevant descriptors and develop the QSPR models. Results of the PLSR and MLR modeling by the selected descriptors were markedly similar. The results showed that descriptors related to nitrogen, carbonyl group, and polarizability strengthen the charge–transfer interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hansch, R.M. Muir, T. Fujita, P.P. Maloney, E. Geiger, M. Streich, J. Am. Chem. Soc. 85, 2817 (1963)

    Article  CAS  Google Scholar 

  2. C. Hansch, T. Fujita, J. Am. Chem. Soc. 86, 1616 (1964)

    Article  CAS  Google Scholar 

  3. C. Hansch, J. Med. Chem. 19, 1 (1976)

    Article  CAS  Google Scholar 

  4. B. Hemmateenejad, R. Miria, N. Edrakia, M. Khoshneviszadeha, A. Shafieec, J. Iran. Chem. Soc. 4, 182 (2007a)

    CAS  Google Scholar 

  5. B. Hemmateenejad, S.M.H. Tabaei, F. Namvaran, J. Iran. Chem. Soc. 4, 481 (2007b)

    CAS  Google Scholar 

  6. J. Polanski, R. Gieleciak, A. Bak, J. Chem. Inf. Comput. Sci. 42, 184 (2002)

    Article  CAS  Google Scholar 

  7. H. Kubinyi, Drug Discovery Today 2, 457 (1997a)

    Article  CAS  Google Scholar 

  8. H. Kubinyi, Drug Discovery Today 2, 538 (1997b)

    Article  CAS  Google Scholar 

  9. H. Kubinyi, QSAR: Hansch analysis and related approaches, in Methods and Principles in Medicinal Chemistry, ed. by R. Mannhold, P. Krokgsgaard-Larsen, H. Timmerman (VCH, Weinheim, 1993)

    Google Scholar 

  10. A.R. Katrizky, U. Maran, V.S. Lobanov, M. Karelson, J. Chem. Inf. Comput. Sci. 40, 1 (2000)

    Article  Google Scholar 

  11. O. Deeb, P.V. Khadikar, M. Goodarzi, J. Iran. Chem. Soc. 8, 176 (2011)

    CAS  Google Scholar 

  12. H.R. Pouretedal, M.H. Keshavarz, J. Iran. Chem. Soc. 8, 78 (2011)

    CAS  Google Scholar 

  13. G.M. Eckert, F. Gutmann, P. Keyzer, Electro Pharmacology (CRC Press, Boca Raton, FL, 1990), p. 1

    Google Scholar 

  14. H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71, 2703 (1949)

    Article  CAS  Google Scholar 

  15. M. Hasani, A. Rezaei, Spectrochim. Acta A 65, 1093 (2006)

    Article  Google Scholar 

  16. M. Hasani, S. Akbari, Spectrochim. Acta A 68, 409 (2007)

    Article  Google Scholar 

  17. L. Xu, W.-J. Zhang, Anal. Chim. Acta 446, 475 (2001)

    Article  Google Scholar 

  18. S. Wold, M. Sjöström, L. Eriksson, Chemom. Intel. Lab. Sys. 58, 109 (2001)

    Article  CAS  Google Scholar 

  19. H. Martens, S.A. Jensen, J. Holas, A new two stage NIR calibration method, in Progress in Cereal Chemistry and Technology, Partial Least Squares Regression, ed. by J. Kratochvil (Elsevier, Amsterdam, 1983), pp. 607–647

    Google Scholar 

  20. B.M.G. Vandeginste, D.L. Massart, L.M.C. Buydens, S. de Jong, P.J. Lewi, J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics Part B (Elsevier, Amsterdam, 1998)

    Google Scholar 

  21. J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th edn. (Pearson Education Limited, England, 2005), pp. 229–231

    Google Scholar 

  22. Hypercube, Inc. HyperChem, Rel. 4 for Windows, Autodesk, Sausalito, CA, USA (1995)

  23. L.J. Andrews, R.M. Keefer, J. Org. Chem. 53, 2163 (1988b)

    Article  CAS  Google Scholar 

  24. L.J. Andrews, R.M. Keefer, J. Org. Chem. 53, 537 (1988a)

    Article  CAS  Google Scholar 

  25. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  26. R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  CAS  Google Scholar 

  27. R.W. Kennard, L.A. Stone, Technometrics 11, 137 (1969)

    Article  Google Scholar 

  28. J.G. Topliss, R.J. Costello, J. Med. Chem. 15, 1066 (1972)

    Article  CAS  Google Scholar 

  29. P. Gramatica, N. Navas, R. Todeschini, Chemom. Intel. Lab. Sys. 40, 53 (1998)

    Article  CAS  Google Scholar 

  30. R. Todeschini, M. Lasagni, E. Marengo, J. Chemometr. 8, 263 (1994)

    Article  CAS  Google Scholar 

  31. V. Consonni, R. Todeschini, M. Pavan, J. Chem. Inf. Comput. Sci. 42, 682 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Hasani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shariati-Rad, M., Hasani, M. QSPR study of charge–transfer complexes of some organic donors with p-chloranil using PLSR and MLR. J IRAN CHEM SOC 9, 19–25 (2012). https://doi.org/10.1007/s13738-011-0004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-011-0004-0

Keywords

Navigation