Skip to main content

Advertisement

Log in

Different techniques for Alzheimer’s disease classification using brain images: a study

  • Trends and Surveys
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

A Correction to this article was published on 16 November 2021

This article has been updated

Abstract

Alzheimer’s disease (AD) is a kind of dementia that is mostly experienced by people who are in the age of early 60s. In AD, brain cells that are responsible for forming memories and cognitive decisions, get affected which causes overall gray matter shrinkage in the human brain. Since AD patients are growing exponentially in the world, researchers are trying to develop an accurate mechanism for diagnosing the disease using brain images. In this paper, several research articles on AD classification are analyzed along with detailed observations. We have summarized as well as compared the research articles based on their classification performance. Although all the reviewed articles have the potential to classify AD, still there lies major future challenges. Among all the reviewed papers, it is found that the recent deep neural network-based classification techniques can produce the most promising results with an average performance rate of 93%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Change history

References

  1. N. C. C. for Mental Health UK, et al (2007) Dementia. In: Dementia: a NICE-SCIE guideline on supporting people with dementia and their Carers in Health and Social Care, British Psychological Society

  2. Korolev IO (2014) Alzheimer’s disease: a clinical and basic science review. Med Stud Res J 4(1):24–33

    Google Scholar 

  3. Thompson PM, Hayashi KM, De Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM et al (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23(3):994–1005. https://doi.org/10.1523/JNEUROSCI.23-03-00994.2003

    Article  Google Scholar 

  4. Banzi R, Camaioni P, Tettamanti M, Lucca U et al (2016) Older patients are still under-represented in clinical trials of Alzheimer’s disease. Alzheimer’s Res Ther 8(1):32. https://doi.org/10.1186/s13195-016-0201-2

    Article  Google Scholar 

  5. NIH (2020) Alzheimer’s disease: a clinical and basic science review. https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet. Accessed 13 July 2020

  6. A. Association, Alzheimer’s Disease Fact Sheet. https://www.alz.org/in/dementia-alzheimers-en.asp#diagnosis. Accessed 13 July 2020

  7. Kaye JA (1998) Diagnostic challenges in dementia. Neurology 51(1 Suppl 1):S45–S52. https://doi.org/10.1212/WNL.51.1_Suppl_1.S45

    Article  Google Scholar 

  8. Mahesh G, Tasneem S (2014) Biomarker controversies and diagnostic difficulties in Alzheimer’s disease. Am J Phytomed Clin Therap 2(4):463–8

    Google Scholar 

  9. Miller R (2000) Time and the brain. CRC Press

  10. Sheehan B (2012) Assessment scales in dementia. Therap Adv Neurol Disord 5(6):349–358. https://doi.org/10.1177/1756285612455733

    Article  Google Scholar 

  11. O’Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, Lewczuk P, Posner H, Hall J, Johnson L et al (2017) Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimer’s Dement 13(1):45–58. https://doi.org/10.1016/j.jalz.2016.09.014

    Article  Google Scholar 

  12. Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1):26–32. https://doi.org/10.1016/j.tibtech.2010.09.007

    Article  Google Scholar 

  13. Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS et al (2016) A/t/n: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5):539–547. https://doi.org/10.1212/WNL.0000000000002923

    Article  Google Scholar 

  14. Cousins KA, Irwin DJ, Wolk DA, Lee EB, Shaw LM, Trojanowski JQ, Da Re F, Gibbons GS, Grossman M, Phillips JS (2020) Atn status in amnestic and non-amnestic Alzheimer’s disease and frontotemporal lobar degeneration. Brain 143(7):2295–2311. https://doi.org/10.1093/brain/awaa165

    Article  Google Scholar 

  15. Janicak PG, Dokucu ME (2015) Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatr Dis Treat 11:1549. https://doi.org/10.2147/NDT.S67477

    Article  Google Scholar 

  16. Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y (2017) Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 128(11):2125–2139. https://doi.org/10.1016/j.clinph.2017.08.007

    Article  Google Scholar 

  17. Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH (2018) Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Dis Mark. https://doi.org/10.1155/2018/5174815

    Article  Google Scholar 

  18. Turner RS, Stubbs T, Davies DA, Albensi BC (2020) Potential new approaches for diagnosis of Alzheimer’s disease and related dementias. Front Neurol 11:496. https://doi.org/10.3389/fneur.2020.00496

    Article  Google Scholar 

  19. Dastgheib ZA, Lithgow B, Moussavi Z (2012) Diagnosis of Parkinson’s disease using electrovestibulography. Med Biological Eng Comput 50(5):483–491. https://doi.org/10.1007/s11517-012-0890-z

    Article  Google Scholar 

  20. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  Google Scholar 

  21. Gooblar J, Roe CM, Selsor NJ, Gabel MJ, Morris JC (2015) Attitudes of research participants and the general public regarding disclosure of Alzheimer disease research results. JAMA Neurol 72(12):1484–1490. https://doi.org/10.1001/jamaneurol.2015.2875

    Article  Google Scholar 

  22. Beason-Held LL, Goh JO, An Y, Kraut MA, O’Brien RJ, Ferrucci L, Resnick SM (2013) Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 33(46):18008–18014. https://doi.org/10.1523/JNEUROSCI.1402-13.2013

    Article  Google Scholar 

  23. Smith AD (2002) Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci 99(7):4135–4137. https://doi.org/10.1073/pnas.082107399

    Article  Google Scholar 

  24. Symms M, Jäger H, Schmierer K, Yousry T (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75(9):1235–1244. https://doi.org/10.1136/jnnp.2003.032714

    Article  Google Scholar 

  25. Ledig C, Schuh A, Guerrero R, Heckemann RA, Rueckert D (2018) Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci Rep 8(1):11258–11284. https://doi.org/10.1038/s41598-018-29295-9

    Article  Google Scholar 

  26. Islam J, Zhang Y (2018) Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform 5(2):2. https://doi.org/10.1186/s40708-018-0080-3

    Article  Google Scholar 

  27. Yamanakkanavar N, Choi JY, Lee B (2020) MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors 20(11):3243. https://doi.org/10.3390/s20113243

    Article  Google Scholar 

  28. ADNI, Alzheimer’s disease neuroimaging initiative: ADNI. http://adni.loni.usc.edu/data-samples/access-data. Accessed 13 July 2020

  29. OASIS Brains, Open access series of imaging studies. https://www.oasis-brains.org Accessed 13 July 2020

  30. Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learn

  31. Hemanth DJ, Anitha J (2012) Image pre-processing and feature extraction techniques for magnetic resonance brain image analysis. In: International conference on future generation communication and networking. Springer, pp 349–356. https://doi.org/10.1007/978-3-642-35594-3_47

  32. Basheera S, Ram MSS (2019) Convolution neural network-based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of t2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s & Dement Transl Res Clin Interven 5:974–986. https://doi.org/10.1016/j.trci.2019.10.001

    Article  Google Scholar 

  33. Fischmeister FPS, Höllinger I, Klinger N, Geissler A, Wurnig M, Matt E, Rath J, Robinson S, Trattnig S, Beisteiner R (2013) The benefits of skull stripping in the normalization of clinical fmri data. NeuroImage Clin 3:369–380. https://doi.org/10.1016/j.nicl.2013.09.007

  34. Swiebocka-Wiek J (2016) Skull stripping for MRI images using morphological operators. In: IFIP international conference on computer information systems and industrial management. Springer, pp 172–182

  35. Guyon I, Gunn S, Nikravesh M, Zadeh LA (2008) Feature extraction: foundations and applications, vol 207. Springer

  36. Segovia F, Górriz J, Ramírez J, Salas-Gonzalez D, Álvarez I, López M, Chaves R, Initiative ADN et al (2012) A comparative study of feature extraction methods for the diagnosis of Alzheimer’s disease using the ADNI database. Neurocomputing 75(1):64–71. https://doi.org/10.1016/j.neucom.2011.03.050

    Article  Google Scholar 

  37. Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70–79. https://doi.org/10.1016/j.neucom.2017.11.077

    Article  Google Scholar 

  38. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517. https://doi.org/10.1093/bioinformatics/btm344

    Article  Google Scholar 

  39. Wani N, Raza K (2018) Multiple kernel-learning approach for medical image analysis. In: Soft computing based medical image analysis. Elsevier, pp 31–47. https://doi.org/10.1016/B978-0-12-813087-2.00002-6

  40. Xiao Z, Ding Y, Lan T, Zhang C, Luo C, Qin Z (2017) Brain MR image classification for Alzheimer’s disease diagnosis based on multifeature fusion. Comput Math Methods Med. https://doi.org/10.1155/2017/1952373

    Article  Google Scholar 

  41. Kumar SS, Nandhini M (2016) A comprehensive survey: early detection of Alzheimer’s disease using different techniques and approaches, IJCET

  42. Mareeswari S, Jiji GW (2015) A survey: early detection of Alzheimer’s disease using different techniques. Int J Comput Sci Appl 5(1):27–37. https://doi.org/10.5121/ijcsa.2015.5103

    Article  Google Scholar 

  43. Lohar M, Patange R (2018) A survey on classification methods of brain MRI for Alzheimer’s disease. Int J Eng Res Technol 7(5):22780181

    Google Scholar 

  44. Zheng C, Xia Y, Pan Y, Chen J (2016) Automated identification of dementia using medical imaging: a survey from a pattern classification perspective. Brain Inform 3(1):17–27. https://doi.org/10.1007/s40708-015-0027-x

    Article  Google Scholar 

  45. Sherin A, Rajeswari R (2018) A comparative survey of feature extraction and classification techniques for early diagnosis of Alzhimer’s disease. Int J Adv Res Comput Sci. https://doi.org/10.26483/ijarcs.v9i2.5353

    Article  Google Scholar 

  46. Cusano C, Ciocca G, Schettini R (2003) Image annotation using SVM. In: Internet imaging V, vol 5304. International Society for Optics and Photonics, pp 330–338. https://doi.org/10.1117/12.526746

  47. Karamizadeh S, Abdullah SM, Halimi M, Shayan J, Javad Rajabi M (2014) Advantage and drawback of support vector machine functionality, in, (2014) International conference on computer, communications, and control technology (I4CT). IEEE, pp 63–65

  48. Kraetzer C, Dittmann J (2007) Pros and cons of mel-cepstrum based audio steganalysis using SVM classification. In: International workshop on information hiding. Springer, pp 359–377. https://doi.org/10.1007/978-3-540-77370-2_24

  49. Alam S, Kwon G-R, Kim J-I, Park C-S (2017) Twin SVM-based classification of Alzheimer’s disease using complex dual-tree wavelet principal coefficients and lda. J Healthc Eng. https://doi.org/10.1155/2017/8750506

    Article  Google Scholar 

  50. Jongkreangkrai C, Vichianin Y, Tocharoenchai C, Arimura H, Initiative ADN, et al (2016) Computer-aided classification of Alzheimer’s disease based on support vector machine with combination of cerebral image features in MRI. In: Journal of physics: conference series, vol 694. IOP Publishing, p 012036. https://doi.org/10.1088/1742-6596/694/1/012036

  51. Elshatoury H, Avots E, Anbarjafari G, Initiative ADN et al (2019) Volumetric histogram-based Alzheimer’s disease detection using support vector machine. J Alzheimer’s Dis 72(2):515–524. https://doi.org/10.3233/JAD-190704

    Article  Google Scholar 

  52. Nanni L, Brahnam S, Salvatore C, Castiglioni I, Initiative ADN et al (2019) Texture descriptors and voxels for the early diagnosis of Alzheimer’s disease. Artif Intell Med 97:19–26. https://doi.org/10.1016/j.artmed.2019.05.003

    Article  Google Scholar 

  53. Zhang J, Liu M, An L, Gao Y, Shen D (2017) Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J Biomed Health Inform 21(6):1607–1616. https://doi.org/10.1109/JBHI.2017.2704614

    Article  Google Scholar 

  54. Richhariya B, Tanveer M, Rashid A, Initiative ADN et al (2020) Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed Signal Process Control 59:101903. https://doi.org/10.1016/j.bspc.2020.101903

    Article  Google Scholar 

  55. Ali J, Khan R, Ahmad N, Maqsood I (2012) Random forests and decision trees. Int J Comput Sci Issues 9(5):272

    Google Scholar 

  56. Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinform 9(1):319. https://doi.org/10.1186/1471-2105-9-319

    Article  Google Scholar 

  57. Naghibi SA, Ahmadi K, Daneshi A (2017) Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour Manag 31(9):2761–2775. https://doi.org/10.1007/s11269-017-1660-3

  58. Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D, Initiative ADN et al (2013) Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage 65:167–175. https://doi.org/10.1016/j.neuroimage.2012.09.065

    Article  Google Scholar 

  59. Lebedev A, Westman E, Van Westen G, Kramberger M, Lundervold A, Aarsland D, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M et al (2014) Random forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage Clin 6:115–125. https://doi.org/10.1016/j.nicl.2014.08.023

  60. Oppedal K, Eftestøl T, Engan K, Beyer MK, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int J Biomed Imaging. https://doi.org/10.1155/2015/572567

    Article  Google Scholar 

  61. Ardekani BA, Bermudez E, Mubeen AM, Bachman AH (2017) Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment. J Alzheimer’s Dis 55(1):269–281. https://doi.org/10.3233/JAD-160594

    Article  Google Scholar 

  62. Maggipinto T, Bellotti R, Amoroso N, Diacono D, Donvito G, Lella E, Monaco A, Scelsi MA, Tangaro S, Initiative ADN et al (2017) Dti measurements for Alzheimer’s classification. Phys Med Biol 62(6):2361. https://doi.org/10.1088/1361-6560/aa5dbe

    Article  Google Scholar 

  63. Kim J, Lee M, Lee MK, Wang S-M, Kim N-Y, Kang DW, Um YH, Na H-R, Woo YS, Lee CU et al (2021) Development of random forest algorithm based prediction model of Alzheimer’s disease using neurodegeneration pattern. Psychiatry Investig 18(1):69. https://doi.org/10.30773/pi.2020.0304

    Article  Google Scholar 

  64. Mahmon NA, Ya’acob N (2014) A review on classification of satellite image using artificial neural network (ANN). In: IEEE 5th control and system graduate research colloquium. IEEE, pp 153–157. https://doi.org/10.1109/ICSGRC.2014.6908713

  65. Dumitru C, Maria V (2013) Advantages and disadvantages of using neural networks for predictions. Ovidius Univ Ann Ser Econ Sci 13(1):66

    Google Scholar 

  66. Basu JK, Bhattacharyya D, Kim T-H (2010) Use of artificial neural network in pattern recognition. Int J Softw Eng Its Appl 4(2):66

    Google Scholar 

  67. Basaia S, Agosta F, Wagner L, Canu E, Magnani G, Santangelo R, Filippi M, Initiative ADN et al (2019) Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin 21:101645. https://doi.org/10.1016/j.nicl.2018.101645

    Article  Google Scholar 

  68. Jain R, Jain N, Aggarwal A, Hemanth DJ (2019) Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cognit Syst Res 57:147–159. https://doi.org/10.1016/j.cogsys.2018.12.015

    Article  Google Scholar 

  69. Lu D, Popuri K, Ding GW, Balachandar R, Beg MF (2018) Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-pet images. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-22871-z

    Article  Google Scholar 

  70. Liu M, Cheng D, Yan W (2018) Alzheimer’s disease neuroimaging i, classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDGPET images. Front Neuroinform 12:35. https://doi.org/10.3389/fninf.2018.00035

    Article  Google Scholar 

  71. Liu M, Cheng D, Wang K, Wang Y, Initiative ADN et al (2018) Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics 16(3–4):295–308. https://doi.org/10.1007/s12021-018-9370-4

    Article  Google Scholar 

  72. Guru D, Sharath Y, Manjunath S (2010) Texture features and KNN in classification of flower images. IJCA Spec Issue RTIPPR 1:21–29

    Google Scholar 

  73. Liao Y, Vemuri VR (2002) Use of k-nearest neighbor classifier for intrusion detection. Comput Secur 21(5):439–448. https://doi.org/10.1016/S0167-4048(02)00514-X

  74. Imandoust SB, Bolandraftar M (2013) Application of k-nearest neighbor (KNN) approach for predicting economic events: theoretical background. Int J Eng Res Appl 3(5):605–610

    Google Scholar 

  75. Sharma K, Kaur A, Gujral S (2014) A review on various brain tumor detection techniques in brain MRI images. IOSR J Eng 4(05):06–12. https://doi.org/10.9790/3021-04530612

  76. Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ, Rajinikanth V, Yeong CH (2019) Automated detection of Alzheimer’s disease using brain MRI images-a study with various feature extraction techniques. J Med Syst 43(9):302. https://doi.org/10.1007/s10916-019-1428-9

    Article  Google Scholar 

  77. Kamathe RS, Joshi KR (2018) A robust optimized feature set based automatic classification of Alzheimer’s disease from brain MR images using k-NN and adaboost. ICTACT J Image Video Process 8(3):56. https://doi.org/10.21917/ijivp.2017.0234

    Article  Google Scholar 

  78. Tufail AB, Abidi A, Siddiqui AM, Younis MS (2012) Automatic classification of initial categories of Alzheimer’s disease from structural MRI phase images: a comparison of PSVM, KNN and ANN methods. Age 2012:1731. https://doi.org/10.5281/zenodo.1084608

    Article  Google Scholar 

  79. Kruthika K, Maheshappa H, Initiative ADN et al (2019) Multistage classifier-based approach for Alzheimer’s disease prediction and retrieval. Inform Med Unlocked 14:34–42. https://doi.org/10.1016/j.imu.2018.12.003

    Article  Google Scholar 

  80. Taqi AM, Al-Azzo F, Milanova M (2017) Classification of Alzheimer disease based on normalized hu moment invariants and multiclassifier. Int J Adv Comput Sci Appl 8(11):10–18. https://doi.org/10.14569/IJACSA.2017.081102

    Article  Google Scholar 

  81. Lin N, Jiang J, Guo S, Xiong M (2015) Functional principal component analysis and randomized sparse clustering algorithm for medical image analysis. PLoS ONE 10(7):e0132945. https://doi.org/10.1371/journal.pone.0132945

    Article  Google Scholar 

  82. Schmidt MF, Storrs JM, Freeman KB, Jack CR Jr, Turner ST, Griswold ME, Mosley TH Jr (2018) A comparison of manual tracing and freesurfer for estimating hippocampal volume over the adult lifespan. Hum Brain Mapp 39(6):2500–2513. https://doi.org/10.1002/hbm.24017

    Article  Google Scholar 

  83. Garg P, Jain T (2017) A comparative study on histogram equalization and cumulative histogram equalization. Int J New Technol Res 3(9):5–6. https://doi.org/10.5121/sipij.2013.4502

    Article  Google Scholar 

  84. Maldonado S, Pérez J, Bravo C (2017) Cost-based feature selection for support vector machines: an application in credit scoring. Eur J Oper Res 261(2):656–665. https://doi.org/10.1016/j.ejor.2017.02.037

    Article  MathSciNet  MATH  Google Scholar 

  85. Rohr K (2001) Landmark-based image analysis: using geometric and intensity models, vol 21. Springer

  86. Zhou H, Wang R, Wang C (2008) A novel extended local-binary-pattern operator for texture analysis. Inf Sci 178(22):4314–4325. https://doi.org/10.1016/j.ins.2008.07.015

    Article  MATH  Google Scholar 

  87. Ahad NA, Yahaya SSS (2014) Sensitivity analysis of Welch’st-test. In: AIP Conference proceedings, vol 1605. American Institute of Physics, pp 888–893. https://doi.org/10.1063/1.4887707

  88. Pham TA (2010) Optimization of texture feature extraction algorithm

  89. Gadkari D (2004) Image quality analysis using GLCM

  90. Li M, Du W, Nian F (2014) An adaptive particle swarm optimization algorithm based on directed weighted complex network. Math Probl Eng. https://doi.org/10.1155/2014/434972

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors were responsible for concept, study, and writing of the original manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ruhul Amin Hazarika or Debdatta Kandar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, R.A., Abraham, A., Sur, S.N. et al. Different techniques for Alzheimer’s disease classification using brain images: a study. Int J Multimed Info Retr 10, 199–218 (2021). https://doi.org/10.1007/s13735-021-00210-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-021-00210-9

Keywords

Navigation