Skip to main content
Log in

Relaxation spectrum of poly(styrene-b-isoprene-b-styrene) triblock copolymer

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A relatively complete continuous relaxation spectrum H(τ) of poly(styrene-b-isoprene-b-styrene) (SIS) two-phase system was divided into five regions based on the variation of H(τ) strength, which corresponded to: (1) glass transition of PI phase, (2) high elastic state of PI phase, (3) glass transition of PS phase, (4) high elastic state of PS phase, and (5) viscous flow state of the entire SIS molecular chain. Five regions only appeared in SIS1105, because the molecular of SIS1105 experienced glass transition of PI block, PS block, and viscous flow of the whole molecular chain. The stress relaxation of SIS was influenced by the S/I ratios, because the PS microdomains ultimately determined the relaxation characteristics. The stress relaxation of SIS system was also closely related to the viscous flow transition temperature (Tf). When the S/I ratio was low (15/85), forced stress relaxation occurred; when the S/I ratio was high (29/71 and 45/55), the SIS system did not show stress relaxation below the Tf. When the temperature was higher than the Tf, the S/I ratio did not affect the stress relaxation. The relaxation information obtained from the Cole–Cole diagram further verified the analysis of the continuous relaxation spectrum H(τ) and stress relaxation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [hhq@qust.edu.cn], upon reasonable request.

References

  1. Ferri D, Canetti M (2006) Spurt and melt flow distorsions of linear styrene-isoprene-styrene triblock copolymers. J Rheol 50:611–624

    Article  CAS  Google Scholar 

  2. Öztürk T, Meyvacı E (2017) Synthesis and characterization poly(ϵ-caprolactone-b-ethylene glycol-b-ϵ-caprolactone) ABA type block copolymers via “click” chemistry and ring-opening polymerization. J Macromol Sci Part A 54:575–581

    Article  Google Scholar 

  3. Çatıker E, Öztürk T, Atakay M, Salih B (2020) Synthesis and characterization of the ABA-type poly(ester-ether-ester) block copolymers. J Macromol Sci Part A 57:600–609

    Article  Google Scholar 

  4. Çatıker E, Meyvacı E, Atakay M, Salih B, Öztürk T (2019) Synthesis and characterization of amphiphilic triblock copolymers including β-alanine/α-methyl-β-alanine and ethylene glycol by “click” chemistry. Polym Bull 76:2113–2128

    Article  Google Scholar 

  5. Luo H, Han H, Chi H, Li J, Zhao S, Tao Y, Hu H (2021) Research on the viscous flow transition of styrene-isoprene-styrene triblock copolymer by rheology. J Polym Res 28:160

    Article  CAS  Google Scholar 

  6. Chen P, Bates FS, Dorfman KD (2023) Alternating gyroid stabilized by surfactant-like triblock terpolymers in IS/SO/ISO ternary blends. Macromolecules 56:2568–2577

    Article  Google Scholar 

  7. Nian S, Cai LH (2022) Dynamic mechanical properties of self-assembled bottlebrush polymer networks. Macromolecules 55:8058–8066

    Article  CAS  Google Scholar 

  8. Hamley IW (1999) The physics of block copolymers. Oxford University Press, Oxford

    Google Scholar 

  9. Tanaka Y, Hasegawa H, Hashimoto T, Ribbe A, Sugiyama K, Hirao A, Nakahama S (1999) A study of three-phase structures in ABC triblock copolymers. Polym J 31:989–994

    Article  CAS  Google Scholar 

  10. Chi H, Han H, Tian G, Luo H, Hong S, Li J, Hu H (2021) Decrease in viscosity of styrene-isoprene-styrene filling systems induced by micro elastic phase. J Appl Polym Sci 138:51368

    Article  CAS  Google Scholar 

  11. Shang Z, Luo H, Han H, Jia T, Hu H (2023) Study on rheological behavior of polystyrene-polyisoprene-polystyrene around viscous flow transformation: effect of polystyrene block content and molecular weight. J Appl Polym Sci 140:e54358

    Article  CAS  Google Scholar 

  12. Han H, Tian G, Gao Q, Hu H, Zhao J, Li J (2020) Wall slip of styrene-isoprene-styrene (SIS) triblock copolymer induced by micro elastic phase. Polymer 209:122990

    Article  CAS  Google Scholar 

  13. Gwo-Wen W, Ging-Ho H, Jin-Sheng Y (1994) Stress relaxation behavior of low epoxidized poly(styrene-b-butadiene-b-styrene) triblock copolymers. Mater Chem Phys 39:29–33

    Article  Google Scholar 

  14. Tong X, Wang Q, Wang HX, Li XH, Wu W, Che XY (2014) Fabrication of pH sensitive amphiphilic hot-melt pressure sensitive adhesives for transdermal drug delivery system. Int J Adhes Adhes 48:217–223

    Article  CAS  Google Scholar 

  15. Zhao Z, Wang Z, Zhang C (2014) Preparation and characterization of polarity-modulated SIS-based hot-melt pressure-sensitive adhesives. J Adhes Sci Technol 28:1090–1102

    Article  CAS  Google Scholar 

  16. Wang Q, Wang YZ, Zhao ZF, Fang B (2012) Synthesis of SIS-based hot-melt pressure sensitive adhesives for transdermal delivery of hydrophilic drugs. Int J Adhes Adhes 34:62–67

    Article  Google Scholar 

  17. Han CD, Kim J (1987) Rheological technique for determining the order–disorder transition of block copolymers. J Polym Sci Part B 25:1741–1764

    Article  CAS  Google Scholar 

  18. Wu GW, Hsiue GH, Yang JS (1994) Stress relaxation in poly(styrene-butadiene-styrene) and poly(styreneisoprene-styrene) triblock copolymers and their derivatives. Mater Chem Phys 37:191–196

    Article  CAS  Google Scholar 

  19. Hotta A, Clarke SM, Terentjev EM (2002) Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer. Macromolecules 35:271–277

    Article  CAS  Google Scholar 

  20. McDougall I, Orbey N, Dealy JM (2014) Inferring meaningful relaxation spectra from experimental data. J Rheol 58:779–797

    Article  CAS  Google Scholar 

  21. Kontogiorgos V (2010) Calculation of relaxation spectra from mechanical spectra in MATLAB. Polym Test 29:1021–1025

    Article  CAS  Google Scholar 

  22. Malkin AY (2006) Continuous relaxation spectrum—its advantages and methods of calculation. Appl Mech Eng 11:235–243

    Google Scholar 

  23. Winter HH (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Nonnewton Fluid Mech 68:225–239

    Article  CAS  Google Scholar 

  24. Hoffman EJ (1972) Viscoelastic transition. J Eng Ind 94:732–737

    Article  Google Scholar 

  25. Kim JK, Lee HH, Sakurai S, Aida S, Masamoto J, Nomura S, Kitagawa Y, Suda Y (1999) Lattice disordering and domain dissolution transitions in polystyrene-block-poly(ethylene-co-but-1-ene)-block-polystyrene triblock copolymer having a highly asymmetric composition. Macromolecules 32:6707–6717

    Article  CAS  Google Scholar 

  26. Hanafy Bayomi RA, Aoki T, Shimojima T, Takagi H, Shimizu N, Igarashi N, Sasaki S, Sakurai S (2018) Structural analyses of sphere- and cylinder-forming triblock copolymer thin films near the free surface by atomic force microscopy, X-ray photoelectron spectroscopy, and grazing-incidence small-angle X-ray scattering. Polymer 147:202–212

    Article  CAS  Google Scholar 

  27. Zheng Q, Du M, Yang B, Wu G (2001) Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. Polymer 42:5743–5747

    Article  CAS  Google Scholar 

  28. Zheng Q, Zhang XW, Pan Y, Yi XS (2002) Polystyrene/Sn-Pb alloy blends: I) dynamic rheological behavior. J Appl Polym Sci 86:3166–3172

    Article  CAS  Google Scholar 

  29. Wittmer JP, Xu H, Baschnagel J (2016) Simple average expression for shear-stress relaxation modulus. Phys Rev E 93:012103

    Article  CAS  PubMed  Google Scholar 

  30. Koppi KA, Tirrell M, Bates FS, Almdal K, Mortensen K (1994) Epitaxial growth and shearing of the body centered cubic phase in diblock copolymer melts. J Rheol 38:999–1027

    Article  CAS  Google Scholar 

  31. Kossuth MB, Morse DC, Bates FS (1999) Viscoelastic behavior of cubic phases in block copolymer melts. J Rheol 43:167–196

    Article  CAS  Google Scholar 

  32. Porath L, Huang J, Ramlawi N, Derkaloustian M, Ewoldt RH, Evans CM (2022) Relaxation of vitrimers with kinetically distinct mixed dynamic bonds. Macromolecules 55:4450–4458

    Article  CAS  Google Scholar 

  33. Xi L, Luo R, Ma Q, Tu C, Ibrahim Shah Y (2022) An improved method to establish continuous relaxation spectrum of asphalt materials. Constr Build Mater 354:129182

    Article  Google Scholar 

  34. Zhao Y, Liu H, Liu W (2013) Characterization of linear viscoelastic properties of asphalt concrete subjected to confining pressure. Mech Time-Dependt Mat 17:449–463

    Article  CAS  Google Scholar 

  35. Han D, Xia X, Zhao Y, Xie Y, Zhou Z (2023) Investigation of the time-domain linear viscoelastic response of warm mix asphalt mixture via discrete and continuous spectrum. Case Stud Constr Mater 19:e02290

    Google Scholar 

  36. Bhattacharjee S, Swamy AK, Daniel JS (2012) Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete. Mech Time-Dependt Mat 16:287–305

    Article  CAS  Google Scholar 

  37. Jiang Y, Yan C, Shi D, Liu Z, Yang M (2019) Enhanced rheological properties of PLLA with a purpose-designed PDLA-b-PEG-b-PDLA triblock copolymer and the application in the film blowing process to acquire biodegradable PLLA films. ACS Omega 4:13295–13302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stadler FJ, van Ruymbeke E (2010) An improved method to obtain direct rheological evidence of monomer density reequilibration for entangled polymer melts. Macromolecules 43:9205–9209

    Article  CAS  Google Scholar 

  39. Stadler FJ, Bailly C (2009) A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol Acta 48:33–49

    Article  CAS  Google Scholar 

  40. Liu H, Luo R, Lv H (2018) Establishing continuous relaxation spectrum based on complex modulus tests to construct relaxation modulus master curves in compliance with linear viscoelastic theory. Constr Build Mater 165:372–384

    Article  Google Scholar 

  41. Stadler FJ (2012) Using relaxation spectra to understand molecular processes in ring polymers. Korea-Aust Rheol J 24:199–203

    Article  Google Scholar 

  42. Kaschta J, Schwarzl RR (1994) Calculation of discrete retardation spectra from creep data: I) Method. Rheol Acta 33:517–529

    Article  CAS  Google Scholar 

  43. Catsiff E, Tobolsky AV (1955) Stress-relaxation of polyisobutylene in the transition region (1, 2). J Colloid Sci 10:375–392

    Article  CAS  Google Scholar 

  44. Zhang XW, Pan Y, Zheng Q, Yi XS (2002) Polystyrene/Sn-Pb alloy blends: II) effect of alloy particle surface treatment on dynamic rheological behavior. J Appl Polym Sci 86:3173–3179

    Article  CAS  Google Scholar 

  45. Ghasemi I, Azizi H, Naeimian N (2008) Rheological behaviour of polypropylene/kenaf fibre/wood flour hybrid composite. Iran Polym J 17:191–198

    CAS  Google Scholar 

  46. Ajji A, Choplin L, Prud’homme RE (1988) Rheology and phase separation in polystyrene/poly(vinyl methyl ether) blends. J Polym Sci Part B 26:2279–2289

    Article  Google Scholar 

  47. Niu YH, Wang ZG (2006) Rheologically determined phase diagram and dynamically investigated phase separation kinetics of polyolefin blends. Macromolecules 39:4175–4183

    Article  CAS  Google Scholar 

  48. Gao J, Huang C, Wang N, Yu W, Zhou C (2012) Phase separation of poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) blends in the presence of silica nanoparticles. Polymer 53:1772–1782

    Article  CAS  Google Scholar 

  49. Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969

    Article  CAS  Google Scholar 

  50. Utracki LA (1988) Viscoelastic behavior of polymer blends. Polym Eng Sci 28:1401–1404

    Article  CAS  Google Scholar 

  51. He P, Shen W, Yu W, Zhou C (2014) Mesophase separation and rheology of olefin multiblock copolymers. Macromolecules 47:807–820

    Article  CAS  Google Scholar 

  52. Wittmer JP, Xu H, Benzerara O, Baschnagel J (2015) Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited. Mol Phys 113:2881–2893

    Article  CAS  Google Scholar 

  53. Kriuchevskyi I, Wittmer JP, Benzerara O, Meyer H, Baschnagel J (2017) Numerical determination of shear stress relaxation modulus of polymer glasses. Eur Phys J E 40:43

    Article  CAS  PubMed  Google Scholar 

  54. Chan KM, Wang Y (2023) Development of a tensile relaxation modulus test for identifying the tensile relaxation spectrum of asphalt binder. Constr Build Mater 397:132339

    Article  Google Scholar 

  55. Liu Z, Ma Y, Zhang Z, Shi Z, Gao J (2022) Rapid stress relaxation, multistimuli-responsive elastomer based on dual-dynamic covalent bonds and aniline trimer. Langmuir 38:4812–4819

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2022ME142).

Funding

This study was funded by Natural Science Foundation of Shandong Province, ZR2022ME142, Haiqing Hu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Shang, Z., Han, H. et al. Relaxation spectrum of poly(styrene-b-isoprene-b-styrene) triblock copolymer. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01328-3

Keywords

Navigation