Skip to main content
Log in

Copper-based metal organic framework/polymer foams with long-lasting antibacterial effect

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The development of durable and effective antibacterial materials has been a research hotspot. Here, we reported a new kind of long-lasting stable antibacterial material [Cu-metal–organic framework (MOF)-embedded polyethylene (PE)/ethylene vinyl acetate copolymer (EVA), namely Cu-MOF-embedded PE/EVA] through extrusion foaming, and its structure was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and energy dispersive spectroscopy (EDS). The degree of agglomeration or cluster formation, thermal stability, and melting point temperature of different contents of Cu-MOF/PE/EVA foams were evaluated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The results indicated that with the increase of Cu-MOF content, the average size and swelling ratio for foams increased, instead, the density decreased. Besides, the surface gradually showed good hydrophobicity. Remarkably, the water absorption rate was nearly 8 times that of pure PE/EVA when the Cu-MOF content reached 3%. Since Cu-MOF is stably embedded in the foaming structure and well dispersed, it can release Cu2+ at a rate of about 37 ppb/day in foams containing 3% Cu-MOF, which not only maintains the antimicrobial capacity up to 99.2%, but also have no cytotoxicity. Finally, a promising new candidate for medical material with excellent, durable antibacterial ability was proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA (2021) Chemically engineered immune cell-derived microrobots and biomimetic nanoparticles: emerging biodiagnostic and therapeutic tools. Adv Sci 8:2002499

    Article  CAS  Google Scholar 

  2. Shima K, Coopmeiners J, Graspeuntner S, Dalhoff K, Rupp J (2016) Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett 590:3887–3904

    Article  CAS  PubMed  Google Scholar 

  3. Yang J, Yang Y (2020) Metal-organic frameworks for biomedical applications. Small 16:1906846

    Article  CAS  Google Scholar 

  4. Amiri S, Rahimi A (2019) Poly(ε-caprolactone) electrospun nanofibers containing cinnamon essential oil nanocapsules: a promising technique for controlled release and high solubility. J Ind Text 48:1527–1544

    Article  CAS  Google Scholar 

  5. Fasciani C, Silvero MJ, Anghel MA, Argüello GA, Becerra MC, Scaiano JC (2014) Aspartame-stabilized gold–silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability. J Am Chem Soc 136:17394–17397

    Article  CAS  PubMed  Google Scholar 

  6. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  7. Alig I, Pötschke P, Lellinger D, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4–28

    Article  CAS  Google Scholar 

  8. Santo CE, Quaranta D, Grass G (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen 1:46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abbasi AR, Akhbari K, Morsali A (2012) Dense coating of surface mounted CuBTC metal-organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem 19:846–852

    Article  CAS  PubMed  Google Scholar 

  10. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(HO)3]n. Science 283:1148–1150

    Article  CAS  PubMed  Google Scholar 

  11. Liang S, Wu XL, Xiong J, Zong MH, Lou WY (2020) Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord Chem Rev 406:213149

    Article  CAS  Google Scholar 

  12. Petit C, Burress J, Bandosz TJ (2011) The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon 49:563–572

    Article  CAS  Google Scholar 

  13. Mombini S, Mohammadnejad J, Bakhshandeh B, Narmani A, Nourmohammadi J, Vahdat S, Zirak S (2019) Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol 140:278–287

    Article  CAS  PubMed  Google Scholar 

  14. Shafek R, Michael H, Zaky Sayed A, Ibrahim AG, Al-sayed A (2018) Phytochemical study, antioxidant and cytotoxic activities of Brassica rapa L. leaves extract and its silver nanoparticles. Egypt J Chem 61:237–247

    Google Scholar 

  15. Wu T, Xu W, Guo K, Xie H, Qu JP (2021) Efficient fabrication of lightweight polyethylene foam with robust and durable superhydrophobicity for self-cleaning and anti-icing applications. Chem Eng J 407:127100

    Article  CAS  Google Scholar 

  16. Xu X, Lu G, Yang J, Liu X (2020) Mechanism and rheological properties of high-modulus asphalt. Adv Mater Sci Eng 2020:e8795429

    Article  Google Scholar 

  17. Haque MM, Hasan M (2018) Influence of fiber surface treatment on physico-mechanical properties of betel nut and glass fiber reinforced hybrid polyethylene composites. Adv Mater Proc Technol 4:511–525

    Google Scholar 

  18. Roy S, Darabdhara J, Ahmaruzzaman M (2023) ZnO-based Cu metal-organic framework (MOF) nanocomposite for boosting and tuning the photocatalytic degradation performance. Environ Sci Pollut Res 30:95673–95691

    Article  CAS  Google Scholar 

  19. Kang F, Su Y, Huang X, Zhao ZL, Liu FQ (2023) Microstructure and bactericidal properties of Cu-MOF, Zr-MOF and Fe-MOF. J Cent South Univ 30:3237–3247

    Article  CAS  Google Scholar 

  20. Peterson GW, Au K, Tovar TM, Epps THI (2019) Multivariate CuBTC metal-organic framework with enhanced selectivity, stability, compatibility, and processability. Chem Mater 31:8459–8465

    Article  CAS  Google Scholar 

  21. Musuc AM, Badea-Doni M, Jecu L, Rusu A, Popa VT (2013) FTIR, XRD, and DSC analysis of the rosemary extract effect on polyethylene structure and biodegradability. J Therm Anal Calorim 114:169–177

    Article  CAS  Google Scholar 

  22. Farias GMG, Agrawal P, Hanken RBL, De Araújo JP, De Oliveira ADB, De Mélo TJA (2021) Effect of EVA copolymer containing different VA content on the thermal and rheological properties of bio-based high-density polyethylene/ethylene vinyl acetate blends. J Therm Anal Calorim 146:2127–2139

    Article  CAS  Google Scholar 

  23. Hao S, Liu Y (2022) Constructing and synthesizing optimal Cu-BTC and its application in low-temperature denitration. J Mater Sci 57:1689–1702

    Article  CAS  Google Scholar 

  24. Wang S, Ye B, An C, Wang J, Li Q (2019) Synergistic effects between Cu metal-organic framework (Cu-MOF) and carbon nanomaterials for the catalyzation of the thermal decomposition of ammonium perchlorate (AP). J Mater Sci 54:4928–4941

    Article  CAS  Google Scholar 

  25. Hung KC, Wu JH (2010) Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles. J Wood Sci 56:216–221

    Article  CAS  Google Scholar 

  26. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA, Tsukegi T, Nishida H (2019) Sustainable one-pot process for the production of cellulose nanofiber and polyethylene/cellulose nanofiber composites. J Clean Prod 207:590–599

    Article  CAS  Google Scholar 

  27. Abdul Hamid AR, Osman AF, Mustafa Z, Mandal S, Ananthakrishnan R (2020) Tensile, fatigue and thermomechanical properties of poly(ethylene-co-vinyl acetate) nanocomposites incorporating low and high loadings of pre-swelled organically modified montmorillonite. Polym Test 85:106426

    Article  CAS  Google Scholar 

  28. Sahebian S, Zebarjad SM, Khaki JV, Sajjadi SA (2009) The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE. J Mater Proc Technol 209:1310–1317

    Article  CAS  Google Scholar 

  29. Harkes G, Feijen J, Dankert J (1991) Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in charge and hydrophobicity. Biomater 12:853–860

    Article  CAS  Google Scholar 

  30. Vincent M, Duval RE, Hartemann P, Engels-Deutsch M (2018) Contact killing and antimicrobial properties of copper. J Appl Microbiol 124:1032–1046

    Article  CAS  PubMed  Google Scholar 

  31. Fallahnejad Z, Bakeri G, Fauzi Ismail A (2024) Internally functionalized MnO2 nanotubes in modification of thin-film nanocomposite membranes for water and wastewater treatment. Iran Polym J 33:493–509

    Article  CAS  Google Scholar 

  32. Gupta RS, Mandal Samir, Malakar A, Rege S, Safikul Islam SK, Samanta K, Misra A, Bose S (2024) Graphene oxide offers precise molecular sieving, structural integrity, microplastic removal, and closed-loop circularity in water-remediating membranes through a covalent adaptable network. J Mater Chem A 12:321–334

    Article  Google Scholar 

Download references

Acknowledgement

This research was financially supported by the University Student Innovation Program (2021R434005) and the Lishui “Higher Education Research” Special Project (No. GJYJ202110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zefeng Wang.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Ye, Z., Liang, J. et al. Copper-based metal organic framework/polymer foams with long-lasting antibacterial effect. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01314-9

Keywords

Navigation