Skip to main content
Log in

Evaluation of the potential of topically applied salicylic acid-encapsulated chitosan nanoparticles to protect tomato against Fusarium wilt

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In recent years, there has been a growing emphasis on eco-friendly methods to protect plants from pathogens, aiming to enhance crop yields while minimizing pesticide use. In this context, we synthesized salicylic acid-encapsulated chitosan nanoparticles (SA-CNPs) and evaluated their effectiveness in safeguarding tomato plants against Fusarium wilt caused by Fusarium oxysporum f. sp. Lycopersici (FOL). SA-CNPs at concentrations of 0.01%, 0.05%, 0.1%, 0.15%, and 0.2% w/v were prepared using ionic gelation and characterized through scanning electron microscopy, zeta potential, X-ray diffraction, and Fourier transform infrared spectroscopy techniques. The results revealed an average particle size ranging from 30 to 300 nm, with zeta potential values − 30 to − 53 mV, confirming exceptional stability. Encapsulation efficiency varied from 19 to 90%. In antifungal tests, 0.2% SA-CNPs exhibited 76% inhibition rate using a food poisoning technique. Topical application of SA-CNPs increased the activities of plant defence enzymes and antioxidant enzymes in tomato plants. In an in vitro study, the percent efficacy of disease control (PEDC) demonstrated that 0.1% and 0.15% SA-CNPs provided 50% and 45% efficacy, respectively, in controlling FOL infection in tomato plants. These findings confirm the efficacy of SA-CNPs in reducing Fusarium wilt by leveraging their antifungal properties and enhancing antioxidant and plant defence enzymes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included within the manuscript.

References

  1. Food and Agriculture Organization of the United Nations (2019) FAOSTAT Statistical Database

  2. Snyder WC, Hansen HN (1940) The species concept in Fusarium. Am J Bot 1:64–67

    Article  Google Scholar 

  3. Edel-Hermann V, Lecomte C (2019) Current status of Fusarium oxysporum formae speciales and races. Phytopathology 109:512–530

    Article  CAS  PubMed  Google Scholar 

  4. Walker JC (1971) Fusarium wilt of tomato. APS 56

  5. Hubbeling N, Alexander LJ, Cirulli M (1971) Resistance to Fusarium and Verticillium wilts in tomato 589:1006–1016

    Google Scholar 

  6. Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McGrath DJ, Maltby JE (1989) Fusarium wilt race 3 resistance in tomato. Acta-Hortic 247:107–109

    Article  Google Scholar 

  8. Malhotra SK, Vashistha RN (1993) Genetics of resistance to Fusarium wilt race 1 in current tomato (Lycopersicon pimpinellifolium). Indian J Agric Sci 63:246–347

    Google Scholar 

  9. Kirankumar R, Jagadeesh KS, Krishnaraj PU, Patil MS (2008) Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of Tobacco Mosaic Virus pathogen. J Agric Sci 21:309–311

    Google Scholar 

  10. Kapoor IJ (1988) Fungi involved in tomato wilt syndrome in Delhi, Maharashtra and Tamilnadu. Indian Phytopathol 41:208–213

    Google Scholar 

  11. Pandey KK, Gupta RC (2013) Virulence analysis of Fusarium oxysporum f. sp. lycopersici causing tomato wilt in India. J Mycol Plant Pathol 43:409–413

    Google Scholar 

  12. Asha BB, Chandra Nayaka S, Udayashankar AC, Srinivas C, Niranjana SR (2011) Biological control of Fusarium wilt of tomato. Int J Microbiol Res 3:79–84

    Google Scholar 

  13. Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017) Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401

    Article  CAS  PubMed  Google Scholar 

  14. Meng X, Yang L, Kennedy JF, Tian S (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75

    Article  CAS  Google Scholar 

  15. Abd El-Gawad HG, Bondok AM (2015) Response of tomato plants to salicylic acid and chitosan under infection with tomato mosaic virus. Am Eur J Agric Environ Sci 15:1520–1529

    CAS  Google Scholar 

  16. Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem 47:642–649

    Article  CAS  PubMed  Google Scholar 

  17. Achuo EA, Audenaert K, Meziane H, Höfte M (2004) The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathol 53:65–72

    Article  CAS  Google Scholar 

  18. Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2017) Cu-chitosan nanoparticle boost defence responses and plant growth in maize (Zea mays L.). Sci Rep 7:9754

  19. Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. Int J Polym Mater 2:187–212

    Google Scholar 

  20. Kurita K (1998) Chemistry and application of chitin and chitosan. Polym Degrad Stab 59:117–120

    Article  CAS  Google Scholar 

  21. Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64:6148–6155

    Article  CAS  PubMed  Google Scholar 

  22. Corradini E, De Moura MR, Mattoso LH (2010) A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 1:4

    Google Scholar 

  23. Kumar S, Ye F, Dobretsov S, Dutta J (2019) Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl Sci 9:2409

    Article  CAS  Google Scholar 

  24. Manikandan A, Sathiyabama M (2016) Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. Int J Biol Macromol 84:58–61

    Article  CAS  PubMed  Google Scholar 

  25. Kheiri A, Jorf SM, Malihipour A, Saremi H, Nikkhah M (2017) Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. Int J Biol Macromol 102:526–538

    Article  CAS  PubMed  Google Scholar 

  26. Van SN, Minh HD, Anh DN (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2:289–294

    Article  Google Scholar 

  27. Nadendla SR, Rani TS, Vaikuntapu PR, Maddu RR, Podile AR (2018) HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr Polym 199:11–19

    Article  CAS  PubMed  Google Scholar 

  28. Muthukrishnan S, Murugan I, Selvaraj M (2019) Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydr Polym 212:169–177

    Article  CAS  PubMed  Google Scholar 

  29. Kumaraswamy RV, Kumari S, Choudhary RC, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2019) Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. Int J Biol Macromol 123:59–69

    Article  CAS  PubMed  Google Scholar 

  30. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  PubMed  Google Scholar 

  31. Sathiyabama M, Charles RE (2015) Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Carbohydr Polym 133:400–407

    Article  CAS  PubMed  Google Scholar 

  32. Vincent JM (1947) Distortion of fungal hyphae in the presence of certain inhibitors. Nature 159:850

    Article  CAS  PubMed  Google Scholar 

  33. Patil S, Sriram S, Savitha MJ (2011) Evaluation of non-pathogenic Fusarium for antagonistic activity against Fusarium wilt of tomato. Bio Control 25:118–123

    Google Scholar 

  34. Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 2231:606X

    Google Scholar 

  35. Luck H (1974) Estimation of Catalase Activity: Methods of Enzymology. Academic, New York

    Google Scholar 

  36. Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  37. Fridoch I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  Google Scholar 

  38. Mayer AM, Harel E, Shain Y (1964) 2,3-Naphthalenediol, a specific competitive inhibitor of phenolase. Phytochemistry 3:447–451

    Article  CAS  Google Scholar 

  39. Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Nicholson RL (1984) Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol 25:111–123

    Article  CAS  Google Scholar 

  40. Chester KS (1959) How sick is the plant. Plant Pathol 1:99–142

    Article  Google Scholar 

  41. Wheeler BEJ (1969)An introduction to plant diseases. John Wiley, London

  42. Chen Y, Mohanraj VJ, Wang F, Benson HA (2007) Designing chitosan-dextran sulfate nanoparticles using charge ratios. AAPS Pharm Sci Tech 8:131–139

    Article  CAS  Google Scholar 

  43. Bodmeier R, Oh KH, Pramar Y (1989) Preparation and evaluation of drug-containing chitosan beads. Drug Dev Ind Pharm 15:1475–1494

    Article  CAS  Google Scholar 

  44. Kumar S, Bhanjana G, Sharma A, Dilbaghi N, Sidhu MC, Kim KH (2017) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 586:1272–1278

    Article  CAS  PubMed  Google Scholar 

  45. Sathiyabama M, Parthasarathy R (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325

    Article  CAS  PubMed  Google Scholar 

  46. Yadav P, Yadav AB (2021) Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein/peptide-based drug delivery system. FJPS 7:1–9

    Google Scholar 

  47. Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F (2013) Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym 95:50–56

    Article  CAS  PubMed  Google Scholar 

  48. Rozana R, Yulizar Y, Saefumillah A, Apriandanu DO (2020) Synthesis, characterization and in vitro release study of efavirenz-loaded chitosan nanoparticle. AIP Conf Proc AIP Publishing 2242:1

    Google Scholar 

  49. Kee YJ, Zakaria L, Mohd MH (2020) Morphology, phylogeny and pathogenicity of Fusarium species from Sansevieria trifasciata in Malaysia. Plant Pathol 69:442–454

    Article  Google Scholar 

  50. Anama YP, Díaz RA, Duarte-Alvarado D, Lagos-Burbano TC (2021) Morphological and pathogenic characterization of Fusarium oxysporum in lulo (Solanum spp.). Rev Fac Cienc Agrar 38:20–37

    Google Scholar 

  51. Srinivas C, Devi DN, Murthy KN, Mohan CD, Lakshmeesha TR, Singh B, Kalagatur NK, Niranjana SR, Hashem A, Alqarawi AA, Tabassum B (2019) Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity: A review. Saudi J Biol Sci 26:1315–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Zhang L, Li X, Zhang H, Zhang Y, Li J (2019) Chitosan nanoparticles loaded with salicylic acid induce systemic acquired resistance and suppress cucumber powdery mildew. Nanomater 9:114

    Google Scholar 

  53. Khan MA, Ali I, Akhtar M, Shahzad M, Akhtar MS (2017) Chitosan nanoparticles loaded with salicylic acid as a biocontrol agent against anthracnose disease of mango. JPP 99:257–264

    Google Scholar 

  54. Arora A, Gupta A, Kumar P (2018) Chitosan nanoparticles loaded with salicylic acid: An effective biocontrol agent against early blight of tomato. JPP 100:619–624

    Google Scholar 

  55. Maruyama Y, Yamoto N, Suzuki Y, Chiba Y, Yamazaki KI, Sato T, Yamaguchi J (2013) The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Sci 213:79–87

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi H, Chen Z, Du H, Liu Y, Klessig DF (1997) Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J 11:993–1005

    Article  CAS  PubMed  Google Scholar 

  57. Kwok LY, Schlüter D, Clayton C, Soldati D (2004) The antioxidant systems in Toxoplasma gondii and the role of cytosolic catalase in defence against oxidative injury. Mol Microbiol 51:47–61

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J, Li H, Xu B, Li J, Huang B (2016) Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.). Front Plant Sci 7:1500

  59. Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  60. Kang K, Niu Z, Zhang W, Wei S, Lv Y, Hu Y (2023) Antagonistic Strain Bacillus halotolerans Jk-25 Mediates the Biocontrol of Wheat Common Root Rot Caused by Bipolaris sorokiniana. Plants 12:828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lionetti V, Cervone F, Bellincampi D (2012) Methyl esterification of pectin plays a role during plant–pathogen interactions and affects plant resistance to diseases. J Plant Physiol 169:1623–1630

    Article  CAS  PubMed  Google Scholar 

  62. Banerjee K, Pramanik P, Maity A, Joshi DC, Wani SH, Krishnan P (2019) Methods of using nanomaterials to plant systems and their delivery to plants (Mode of entry, uptake, translocation, accumulation, biotransformation and barriers). Adv Phytonano- tech 2019:123–152

    Article  Google Scholar 

  63. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  64. Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Djalali Farahani-Kofoet R, Witzel K, Graefe J, Grosch R, Zrenner R (2020) Species-specific impact of Fusarium infection on the root and shoot characteristics of asparagus. Pathogens 9:509

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang H, Luo P (2021) Changes in photosynthesis could provide important insight into the interaction between wheat and fungal pathogens. Int J Mol Sci 22:8865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J (2022) How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol Mol Biol Plants 28:485–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Khairy AM, Tohamy MR, Zayed MA, Mahmoud SF, El-Tahan AM, El-Saadony MT, Mesiha PK (2022) Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J Biol Sci 29:2199–2209

    Article  CAS  PubMed  Google Scholar 

  69. Kravanja G, Primozic M, Knez Z, Leitgeb M (2019) Chitosan-based (nano) materials for novel biomedical applications. Molecules 24:1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Balli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesa, A., Mythatha, G.S.S. & Balli, R. Evaluation of the potential of topically applied salicylic acid-encapsulated chitosan nanoparticles to protect tomato against Fusarium wilt. Iran Polym J 33, 671–686 (2024). https://doi.org/10.1007/s13726-024-01283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-024-01283-z

Keywords

Navigation