Skip to main content
Log in

Ionic conductivity and mechanical properties of semi-interpenetrating networks based on poly(ethylene oxide)/polyvinyl alcohol/graphene oxide: a response surface methodology study

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Development of solid polymer electrolyte (SPE) with rational ionic conductivity and mechanical stability for high-temperature solid-state lithium-ion batteries is still challenging. Herein, advanced semi-interpenetrating polymer networks (semi-IPNs) based on poly(ethylene oxide) (PEO)/polyvinyl alcohol (PVA)/graphene oxide (GO) nanoplatelets/lithium perchlorate salt (LiClO4) were prepared using solution-casting approach. The effects of PVA, LiClO4, and GO content variables on the ionic conductivity (IC), Young’s modulus (YM), tensile strength (TS) and elongation-at-break (ELB) of the prepared solid polymer electrolytes (SPEs) were investigated using response surface methodology (RSM). Considering R2 values above 94%, it was found that tensile strength and elongation-at-break decreased by increasing LiClO4 and GO contents, respectively. The DSC results demonstrated that GO nanoplatelets could act as nucleating agents and improve crystallinity. SEM micrographs showed a change in surface morphology due to crosslinking of PVA, which was accompanied by loss of spherulites. In addition, morphological change of the samples and formation of aggregations due to incorporation of nanoparticles was detected. The remarkable ionic conductivity of 1.65 × 10–3 S/cm was obtained for the sample with 30% (by weight) of PVA, 0.6 phr GO, and 12 phr LiClO4. These observations indicated that the prepared solid polymer electrolyte nanocomposites could be used in solid Li-ion batteries with good ionic conductivity and mechanical stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Ismaeil Ghasemi, upon reasonable request.

References

  1. Scrosati B, Vincent CA (2000) Polymer electrolytes: the key to lithium polymer batteries. MRS Bull 25:28–30. https://doi.org/10.1557/mrs2000.15

    Article  CAS  Google Scholar 

  2. Noor NAM, Isa MIN (2019) Investigation on transport and thermal studies of solid polymer electrolyte based on carboxymethyl cellulose doped ammonium thiocyanate for potential application in electrochemical devices. Int J Hydrogen Energy 44:8298–8306. https://doi.org/10.1016/j.ijhydene.2019.02.062

    Article  CAS  Google Scholar 

  3. Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, Wu J, Liu X (2019) Review on polymer-based composite electrolytes for lithium batteries. Front Chem 7:522. https://doi.org/10.3389/fchem.2019.00522

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomari S, Ghasemi I, Esfandeh M (2017) Functionalized graphene nanoplatelets/poly(ethylene oxide) nanocomposites: correlation between crystallization behavior and mechanical performance. Fibers Polym 18:2153–2160. https://doi.org/10.1007/s12221-017-6944-y

    Article  CAS  Google Scholar 

  5. Johari SNAM (2021) A review: ionic conductivity of solid polymer electrolyte based polyethylene oxide. Int J Electrochem Sci 16:211049. https://doi.org/10.20964/2021.10.53

    Article  CAS  Google Scholar 

  6. Feng J, Wang L, Chen Y, Wang P, Zhang H, He X (2021) PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg 8:2. https://doi.org/10.1186/s40580-020-00252-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Volel M, Armand M, Gorecki W (2004) Influence of sample history on the morphology and transport properties of PEO-lithium salt complexes. Macromolecules 37:8373–8380. https://doi.org/10.1021/ma0490404

    Article  ADS  CAS  Google Scholar 

  8. Gomari S, Esfandeh M, Ghasemi I (2017) All-solid-state flexible nanocomposite polymer electrolytes based on poly(ethylene oxide): lithium perchlorate using functionalized graphene. Solid State Ionics 303:37–46. https://doi.org/10.1016/j.ssi.2017.02.005

    Article  CAS  Google Scholar 

  9. Gomari S, Ghasemi I, Esfandeh M (2016) Effect of polyethylene glycol-grafted graphene on the non-isothermal crystallization kinetics of poly(ethylene oxide) and poly(ethylene oxide):lithium perchlorate electrolyte systems. Mater Res Bull 83:24–34. https://doi.org/10.1016/j.materresbull.2016.05.021

    Article  CAS  Google Scholar 

  10. Zhu L, Li J, Jia Y, Zhu P, Jing M, Yao S, Shen X, Li S, Tu F (2020) Toward high performance solid-state lithium-ion battery with a promising PEO/PPC blend solid polymer electrolyte. Int J Energy Res 44:10168–10178. https://doi.org/10.1002/er.5632

    Article  CAS  Google Scholar 

  11. Wu Z, Xie Z, Wang J, Yu T, Du X, Wang Z, Hao X, Abudula A, Guan G (2020) Simultaneously enhancing the thermal stability and electrochemical performance of solid polymer electrolytes by incorporating rod-like Zn2(OH)BO3 particles. Int J Hydrogen Energy 45:19601–19610. https://doi.org/10.1016/j.ijhydene.2020.05.086

    Article  CAS  Google Scholar 

  12. Das S, Ghosh A (2015) Effect of plasticizers on ionic conductivity and dielectric relaxation of PEO-LiClO4 polymer electrolyte. Electrochim Acta 171:59–65. https://doi.org/10.1016/j.electacta.2015.04.178

    Article  CAS  Google Scholar 

  13. Young WS, Albert JNL, Schantz AB, Epps TH (2011) Mixed-salt effects on the ionic conductivity of lithium-doped PEO-containing block copolymers. Macromolecules 44:8116–8123. https://doi.org/10.1021/ma2013157

    Article  ADS  CAS  Google Scholar 

  14. Itoh T (2002) Effect of branching in base polymer on ionic conductivity in hyperbranched polymer electrolytes. Solid State Ionics 150:337–345. https://doi.org/10.1016/S0167-2738(02)00535-0

    Article  CAS  Google Scholar 

  15. Dhatarwal P, Sengwa RJ (2020) Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos Commun 17:182–191. https://doi.org/10.1016/j.coco.2019.12.006

    Article  Google Scholar 

  16. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191. https://doi.org/10.1016/S0378-7753(99)00529-7

    Article  CAS  Google Scholar 

  17. Keyvan Rad J, Alinejad Z, Khoei S (2019) Controlled release and photothermal behavior of multipurpose nanocomposite particles containing encapsulated gold-decorated magnetite and 5-FU in poly (lactide-co-glycolide). ACS Biomater Sci Eng 5:4425–4434. https://doi.org/10.1021/acsbiomaterials.9b00790

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Wong PS, Kim JK (2008) Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng A 483–484:660–663. https://doi.org/10.1016/j.msea.2006.08.145

    Article  CAS  Google Scholar 

  19. Keyvan Rad J, Ghomi AR, Mahdavian AR (2022) Preparation of photoswitchable polyacrylic nanocomposite fibers containing Au nanorods and spiropyran: optical and plasmonic properties. Langmuir 38:8428–8441. https://doi.org/10.1021/acs.langmuir.2c01041

    Article  CAS  PubMed  Google Scholar 

  20. Yuan M, Erdman J, Tang C, Ardebili H (2014) High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv 4:59637–59642. https://doi.org/10.1039/C4RA07919A

    Article  ADS  CAS  Google Scholar 

  21. Shafiei M, Ghasemi I, Gomari S, Abedini A, Jamjah R (2021) Positive temperature coefficient and electrical conductivity investigation of hybrid nanocomposites based on high-density polyethylene/graphene nanoplatelets/carbon black. Phys Status Solidi 218:2100361. https://doi.org/10.1002/pssa.202100361

    Article  ADS  CAS  Google Scholar 

  22. Gahlot S, Kulshrestha V (2020) Graphene based polymer electrolyte membranes for electro-chemical energy applications. Int J Hydrogen Energy 45:17029–17056. https://doi.org/10.1016/j.ijhydene.2019.06.047

    Article  CAS  Google Scholar 

  23. Elmér AM, Jannasch P (2006) Solid electrolyte membranes from semi-interpenetrating polymer networks of PEG-grafted polymethacrylates and poly(methyl methacrylate). Solid State Ionics 177:573–579. https://doi.org/10.1016/j.ssi.2005.12.021

    Article  CAS  Google Scholar 

  24. Zeng Q, Lu Y, Chen P, Li Z, Wen X, Wen W, Liu Y, Zhang S, Zhao H, Zhou H, Wang ZX (2022) Semi-interpenetrating-network all-solid-state polymer electrolyte with liquid crystal constructing efficient ion transport channels for flexible solid lithium-metal batteries. J Energy Chem 67:157–167. https://doi.org/10.1016/j.jechem.2021.09.040

    Article  CAS  Google Scholar 

  25. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res Part B Appl Biomater 100:1451–1457. https://doi.org/10.1002/jbm.b.32694

    Article  CAS  Google Scholar 

  26. Chatterjee B, Kulshrestha N, Gupta PN (2016) Nano composite solid polymer electrolytes based on biodegradable polymers starch and poly vinyl alcohol. Measurement 82:490–499. https://doi.org/10.1016/j.measurement.2016.01.022

    Article  ADS  Google Scholar 

  27. Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–9681. https://doi.org/10.1016/j.progpolymsci.2009.05.003

    Article  CAS  Google Scholar 

  28. Suk J, Lee YH, Kim DW, Cho SY, Kim JM, Kang YS (2016) Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. J Power Sources 334:154–161. https://doi.org/10.1016/j.jpowsour.2016.10.008

    Article  CAS  Google Scholar 

  29. Sunitha VR, Kabbur SK, Pavan GS, Sandesh N, Suhas MR, Lalithnarayan C, Laxman N, Radhakrishnan S (2020) Lithium ion conduction in PVA-based polymer electrolyte system modified with combination of nanofillers. Ionics 26:823–829. https://doi.org/10.1007/s11581-019-03225-9

    Article  CAS  Google Scholar 

  30. Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi SJ (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly(vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222. https://doi.org/10.1016/j.electacta.2017.03.118

    Article  CAS  Google Scholar 

  31. Koduru HK, Scarpelli F, Marinov YG, Hadjichristov GB, Rafailov PM, Miloushev IK, Petrov AG, Godbert N, Bruno L, Scaramuzza N (2018) Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: microstructural, thermo-mechanical, and conductivity properties. Ionics 24:3459–3473. https://doi.org/10.1007/s11581-018-2484-8

    Article  CAS  Google Scholar 

  32. Rahman N, Khan S (2018) Experimental design approach in the optimization of potentiometric method for lansoprazole determination using lansoprazole-tungstate based ion-selective electrode.Ind Eng Chem Res 57:9351–9361 Doi: https://doi.org/10.1021/acs.iecr.8b01281

  33. Cho E, Park JS, Sekhon SS, Park GG, Yang TH, Lee WY, Kim CS, Park SB (2009) A study on proton conductivity of composite membranes with various ionic liquids for high-temperature anhydrous fuel cells. J Electrochem Soc 156:B197. https://doi.org/10.1149/1.3031406

    Article  CAS  Google Scholar 

  34. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–9677. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  35. Shen X, Peng L, Li R, Li H, Wang X, Huang B, Wu D, Zhang P, Zhao J (2019) Semi-interpenetrating network-structured single-ion conduction polymer electrolyte for lithium-ion batteries. Chem Electro Chem 6:4483–4490. https://doi.org/10.1002/celc.201901045

    Article  CAS  Google Scholar 

  36. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5:2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009

    Article  CAS  Google Scholar 

  37. Lee JY, Yu TY, Chung PH, Lee WY, Yeh SC, Wu NL, Jeng RJ (2021) Semi-interpenetrating polymer network electrolytes based on a spiro-twisted benzoxazine for all-solid-state lithium-ion batteries. ACS Appl Energy Mater 4:2663–2671. https://doi.org/10.1021/acsaem.0c03222

    Article  CAS  Google Scholar 

  38. Tanpichai S, Oksman K (2018) Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: mechanical and thermal properties. J Appl Polym Sci 135:45710. https://doi.org/10.1002/app.45710

    Article  CAS  Google Scholar 

  39. Du X, Zhang H, Yuan Y, Wang Z (2021) Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride). Green Energy Environ 6:743–750. https://doi.org/10.1016/j.gee.2020.06.015

    Article  CAS  Google Scholar 

  40. Cong B, Song Y, Ren N, Xie G, Tao C, Huang Y, Xu G, Bao J (2018) Polyethylene glycol-based waterborne polyurethane as solid polymer electrolyte for all-solid-state lithium ion batteries. Mater Des 142:221–228. https://doi.org/10.1016/j.matdes.2018.01.039

    Article  CAS  Google Scholar 

  41. Klongkan S, Pumchusak J (2015) Effects of the addition of LiCF3SO3 salt on the conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Int J Chem Eng Appl 6:165–168. https://doi.org/10.7763/IJCEA.2015.V6.474

    Article  CAS  Google Scholar 

  42. Ghasemi FA, Niyaraki MN, Ghasemi I, Daneshpayeh S (2021) Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology. Mech Adv Mater Struct 28:981–989. https://doi.org/10.1080/15376494.2019.1614702

    Article  Google Scholar 

  43. Nawaz K, Ayub M, Ul-Haq N, Khan MB, Khan Niazi MB, Hussain A (2016) The effect of large area graphene oxide (LAGO) nanosheets on the mechanical properties of polyvinyl alcohol. J Polym Eng 36:399–405. https://doi.org/10.1515/polyeng-2015-0271

    Article  CAS  Google Scholar 

  44. Aram E, Ehsani M, Khonakdar HA, Abdollahi S (2019) Improvement of electrical, thermal, and mechanical properties of poly(methyl methacrylate)/poly(ethylene oxide) blend using graphene nanosheets. J Thermoplast Compos Mater 32:1176–1189. https://doi.org/10.1177/0892705718794776

    Article  CAS  Google Scholar 

  45. Nimah YL, Muhaiminah ZH, Suprapto S (2021) Increase of solid polymer electrolyte ionic conductivity using nano-SiO2 synthesized from sugarcane bagasse as filler. Polymers 13:4240. https://doi.org/10.3390/polym13234240

    Article  CAS  PubMed  Google Scholar 

  46. Aparicio-Collado JL, Novoa JJ, Molina-Mateo J, Torregrosa-Cabanilles C, Serrano-Aroca Á, Sabateri Serra R (2020) Novel semi-interpenetrated polymer networks of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (vinyl alcohol) with incorporated conductive polypyrrole nanoparticles. Polymers 13:57. https://doi.org/10.3390/polym13010057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abu-Thabit N, Hakeem AS, Mezghani K, Ratemi E, Elzagheid M, Umar Y, Primartomo A, Al Batty S, Azad AK, Al Anazi S, Ahmad A (2020) Preparation of pH-Indicative and flame-retardant nanocomposite films for smart packaging applications. Sensors 20:5462. https://doi.org/10.3390/s20195462

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hou X, Siow KS (2001) Novel interpenetrating polymer network electrolytes. Polymer 42:4181–4188. https://doi.org/10.1016/S0032-3861(00)00818-1

    Article  CAS  Google Scholar 

  49. Zeng Q, Wang Y, Wang Y, Cao W, Liu C, Shen C (2019) Polyethylene oxide-assisted dispersion of graphene nanoplatelets in poly(lactic acid) with enhanced mechanical properties and crystallization ability. Polym Test 78:106008. https://doi.org/10.1016/j.polymertesting.2019.106008

    Article  CAS  Google Scholar 

  50. Wen X, Su Y, Li S, Ju W, Wang D (2021) Isothermal crystallization kinetics of poly (ethylene oxide)/poly (ethylene glycol)-g-silica nanocomposites. Polymers 13:648. https://doi.org/10.3390/polym13040648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Motahari F, Raisi A (2021) Reducing the crystallinity of high molecular weight poly (ethylene oxide) using ultraviolet cross-linking for preparation of gas separation membranes. J Appl Polym Sci 138:50059. https://doi.org/10.1002/app.50059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaeil Ghasemi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanpoor, S., Ghasemi, I. & Gomari, S. Ionic conductivity and mechanical properties of semi-interpenetrating networks based on poly(ethylene oxide)/polyvinyl alcohol/graphene oxide: a response surface methodology study. Iran Polym J 33, 567–579 (2024). https://doi.org/10.1007/s13726-023-01269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01269-3

Keywords

Navigation