Skip to main content
Log in

Flammability, smoke production, and mechanical properties of thermoplastic polyurethane composites with an intumescent flame-retardant system and nano-silica

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The aim of this work is to enhance the fire safety of thermoplastic polyurethane (TPU) composites by developing an intumescent flame-retardant (IFR) system consisting of ammonium polyphosphate (APP), melamine polyphosphate (MPP), and pentaerythritol (PER), with nano-silica as synergist. TPU/IFR composites were prepared with various APP/MPP/PER ratios and the optimal ratio of these flame retardants was determined. The cone calorimeter results showed superior fire performance of the TPU/IFR composites. The combination of 40 wt% APP, 10 wt% MPP, and 1 wt% PER significantly decreased the peak heat release (PHRR) and smoke production rates (SPR) by 80% and 89.6%, respectively, with little dripping, and without significant deterioration of mechanical properties. The char morphology with SEM technique revealed a porous char structure. The good synergistic effect of nano-silica was confirmed when the addition of 1 wt% nano-silica to the TPU/IFR with APP:PER ratio 4:1 strengthened the char structure, removed droplets, and reduced PHRR and SPR by 38% and 64.5%, while maintained the mechanical properties. All TPU composites fulfilled UL-94 V-0 grade with the limiting oxygen index (LOI) of 23–36%. TGA analysis indicated that thermal degradation of the IFR-TPUs started at a lower temperature than that of the neat TPU, indicating the earlier decomposition of IFR leading to the increase of char formation up to 25% compared with the 0.2% in the neat TPU. This work introduced a new formulation of a flame-retardant system for TPU with highly efficient flame retardant and smoke suppression properties without loss of mechanical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Prisacariu C (2011) Polyurethane elastomers, from morphology to mechanical aspects, 1st edn. Springer -Verlag

    Book  Google Scholar 

  2. Drobny JG (2014) Handbook of thermoplastic elastomers, 2nd edn. Elsevier Science

    Google Scholar 

  3. Tabuani D, Bellucci F, Terenzi A, Camino G (2012) Flame retarded thermoplastic polyurethane (TPU) for cable jacketing application. Polym Degrad Stabil 97:2594–2601. https://doi.org/10.1016/j.polymdegradstab.2012.07.011

    Article  CAS  Google Scholar 

  4. Zhao X-l, Chen C-K, Chen X-L (2016) Effects of carbon fibers on the flammability and smoke emission characteristics of halogen-free thermoplastic polyurethane/ammonium polyphosphate. J Mater Sci 51:3762–3771. https://doi.org/10.1007/s10853-015-9694-5

    Article  CAS  Google Scholar 

  5. Sut A, Metzsch-Zilligen E, Großhauser M, Pfaendner R, Schartel B (2019) Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane. Polym Test 74:196–204. https://doi.org/10.1016/j.polymertesting

    Article  CAS  Google Scholar 

  6. Chen X, Ma C, Jiao C (2016) Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 126:633–642. https://doi.org/10.1007/s10973-016-5494-7

    Article  CAS  Google Scholar 

  7. Lu S, Shi H, Shen B, Hong W, Yu D, Chen X (2022) Polypyrrole-functionalized g-C3N4 for rheological, combustion and self-healing properties of thermoplastic polyurethane. J Polym Res 29:263. https://doi.org/10.1007/s10965-022-03046-x

    Article  CAS  Google Scholar 

  8. Visakh PM, Yoshihiko A (2015) Flame retardants, polymer blends, composites and nanocomposites. Springer, Cham

    Book  Google Scholar 

  9. Yu G, Song M, Jiao S, Jia X, Li Y (2019) Flame retardancy of thermoplastic polyurethane using phosphorus-containing flame retardants. IOP Conf Ser Mater Sci Eng 585:1012038

    Article  Google Scholar 

  10. Li H, Ning N, Zhang L, Wang Y, Liang W, Tian M (2014) Different flame retardancy effects and mechanisms of aluminum phosphinate in PPO, TPU and pp. Polym Degrad Stab 105:86–95. https://doi.org/10.1016/j.polymdegradstab.2014.03.032

    Article  CAS  Google Scholar 

  11. Usta N (2012) Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter. J Appl Polym Sci 124:3372–3382. https://doi.org/10.1002/app.35352

    Article  CAS  Google Scholar 

  12. Liu S-H, Kuan C-F, Kuan H-C, Shen M-Y, Yang J-M, Chiang C-L (2017) Preparation and flame retardance of polyurethane composites containing microencapsulated melamine polyphosphate. Polymers 31(9):407. https://doi.org/10.3390/polym9090407

    Article  CAS  Google Scholar 

  13. Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: Part I Thermal degradation of ammonium polyphosphate/pentaerythritol mixtures. Polym Degrad Stab 6:243–252. https://doi.org/10.1016/0141-3910(84)90004-1

    Article  CAS  Google Scholar 

  14. Wang W, Chen X, Gu Y, Jiao C (2018) Synergistic fire safety effect between nano-CuO and ammonium polyphosphate in thermoplastic polyurethane elastomer. J Therm Anal Calorim 131:3175–3183. https://doi.org/10.1007/s10973-017-6724-3

    Article  CAS  Google Scholar 

  15. Wang Z, Jiang S, Sun H (2017) Expanded polystyrene foams containing ammonium polyphosphate and nano-zirconia with improved flame retardancy and mechanical properties. Iran Polym J 26:71–79. https://doi.org/10.1007/s13726-016-0499-4

    Article  CAS  Google Scholar 

  16. Liu L, Xu Y, Li S, Xu M, He Y, Shi Z, Li B (2019) A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos Part B Eng 176:107218. https://doi.org/10.1016/j.compositesb.2019.107218

    Article  CAS  Google Scholar 

  17. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  18. Chen X, Jiang Y, Jiao C (2014) Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater 266:114–121. https://doi.org/10.1016/j.jhazmat.2013.12.025

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Jiang Y, Jiao C (2014) Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 117:857–866. https://doi.org/10.1007/s10973-014-3831-2

    Article  CAS  Google Scholar 

  20. Martin DJ, Osman AF, Andriani Y, Edwards GA (2012). In: Gao F (ed) Advances in polymer nanocomposites. Woodhead Publishing

    Google Scholar 

  21. Saha C, Bahera PK, Raut SK, Singha NK (2021) A thermoplastic polyurethane /nanosilica composite via melt mixing process and its properties. SILICON 13:1041–1049. https://doi.org/10.1007/s12633-020-00487-1

    Article  CAS  Google Scholar 

  22. Petrovic ZS, Javni I, Waddon A, Bánhegyi G (2000) Structure and properties of polyurethane-silica nanocomposites. J Appl Polym Sci 76:133–151. https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2%3C133::AID-APP3%3E3.0.CO;2-K

    Article  CAS  Google Scholar 

  23. Vega-Baudrit J, Sibaja-Ballestero M, Martín-Martínez JM (2009) Study of the relationship between nanoparticles of silica and thermoplastic polymer (TPU) in nanocomposites. Nanotech Prog Int 1:24–34

    Google Scholar 

  24. Yuan Y, Yang H, Yu B, Shi Y, Wang W, Song L, Hu Y, Zhang Y (2016) Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind Eng Chem Res 55:10813–10822. https://doi.org/10.1021/acs.iecr.6b02942

    Article  CAS  Google Scholar 

  25. Yang W, Yuen RKK, Hu Y, Lu H, Song L (2011) Development and characterization of fire retarded glass-fiber reinforced poly (1, 4-butylene terephthalate) composites based on a novel flame retardant system. Ind Eng Chem Res 50:11975–11981. https://doi.org/10.1021/ie201550z

    Article  CAS  Google Scholar 

  26. Zhao KM, Xu WZ, Song L, Wang BB, Feng H, Hu Y (2012) Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites. Polym Adv Technol 23:894–900. https://doi.org/10.1002/pat.1985

    Article  CAS  Google Scholar 

  27. Bakhtiyari S, Taghi-Akbari L, Jamali Ashtiani M (2015) Evaluation of thermal fire hazard of 10 polymeric building materials and proposing a classification method based on cone calorimeter results. Fire Mater 39:1–13. https://doi.org/10.1002/fam.2219

    Article  CAS  Google Scholar 

  28. Gou JH, Tang Y (2010) Flame retardant polymer nanocomposites. In: Leng J, Lau AKT (eds) Multifunctional polymer nanocomposites, 1st edn. CRC Press, Boca Raton. https://doi.org/10.1201/b10462

    Chapter  Google Scholar 

  29. Babrauskas V, Peacock R (1990) Heat release rate: the single most important variable in fire hazard. Fire Retardant Chemicals Association (FRCA)

    Google Scholar 

  30. Duquesne S, Le Bras M, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T, Vezin H (2001) Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J Appl Polym Sci 82:3262–3274. https://doi.org/10.1002/app.2185

    Article  CAS  Google Scholar 

  31. Wang Z, Jiang Y, Yang X, Zhao J, Fu W, Wang N, Wang D-Y (2022) Surface modification of ammonium polyphosphate for enhancing flame-retardant properties of thermoplastic polyurethane. Materials 15:1990. https://doi.org/10.3390/ma15061990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Huo C, Miao P, Zhang T, Wei H (2017) Phenolic foam based the influence of intumescent flame retardancy system ammonium polyphosphate/pentaerythritol/melamine. In: Advances in Engineering, Vol.100. Proceedings of International Conference on Manufacturing Engineering and Intelligent Materials (ICMEIM 2017)

  33. Weil ED (1992) Synergists, adjuvants and antagonists in flame-retardant systems. In: Lewin M (ed) Proceedings of conference on recent advance flame retard polyerm mater. BCC Inc, Norwalk

    Google Scholar 

  34. Xia Y, Jin F, Mao Z, Guan Y, Zheng A (2014) Effects of ammonium polyphosphate to pentaerythritol ratio on composition and properties of carbonaceous foam deriving from intumescent flame-retardant polypropylene. Polym Degrad Stab 107:64–73. https://doi.org/10.1016/j.polymdegradstab.2014.04.016

    Article  CAS  Google Scholar 

  35. Bourbigot S, Turf T, Bellayer S, Duquesne S (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab 94:1230–1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016

    Article  CAS  Google Scholar 

  36. Almeras X, Bras ML, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F (2003) Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stab 82:325–331. https://doi.org/10.1016/S0141-3910(03)00187-3

    Article  CAS  Google Scholar 

  37. Jiao CM, Chen XL (2010) Flammability and thermal degradation of intumescent flame-retardant polypropylene composites. Polym Eng Sci 50:767–772. https://doi.org/10.1002/pen.21583

    Article  CAS  Google Scholar 

  38. Dittrich B, Wartig KA, Mülhaupt R, Schartel B (2014) Flame-retardancy properties of intumescent ammonium poly (phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 6:2875–2895. https://doi.org/10.3390/polym6112875

    Article  CAS  Google Scholar 

  39. Yang A-H, Deng C, Chen H, Wei Y-X, Wang Y-Z (2017) A novel schiff-base polyphosphate ester: highly-efficient flame retardant for polyurethane elastomer. Polym Degrad Stab 144:70–82. https://doi.org/10.1016/j.polymdegradstab.08.007

    Article  CAS  Google Scholar 

  40. Chen X, Jiang Y, Liu J, Jiao C, Qian Y, Li S (2015) Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim 120:1493–1501. https://doi.org/10.1007/s10973-015-4424-4

    Article  CAS  Google Scholar 

  41. Sonnier R, Vahabi H, Chivas-Joly C (2019) New insights into the investigation of smoke production using a cone calorimeter. Fire Technol 55:853–873. https://doi.org/10.1007/s10694-018-0806-z

    Article  Google Scholar 

  42. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M (2012) Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater 36:203–215. https://doi.org/10.1002/fam.1101

    Article  CAS  Google Scholar 

  43. Liu L, Zhao X, Ma C, Chen X, Li S, Jiao C (2016) Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim 126:1821–1830. https://doi.org/10.1007/s10973-016-5815-x

    Article  CAS  Google Scholar 

  44. Herrera M, Matuschek G, Kettrup A (2002) Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym Degrad Stab 78:323–331. https://doi.org/10.1016/FS0141-3910(02)00181-7

    Article  CAS  Google Scholar 

  45. Morgan AB (2019) The future of flame retardant polymers – unmet needs and likely new approaches. Polym Rev 59:25–54. https://doi.org/10.1080/15583724.2018.1454948

    Article  CAS  Google Scholar 

  46. Lim K-S, Bee S-T, Sin L-T, Tee T-T, Ratnam C-T, Hui D, Rahmat AR (2016) A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos Part B Eng 84:155–174. https://doi.org/10.1016/j.compositesb.2015.08.066

    Article  CAS  Google Scholar 

  47. Levchik SV, Weil ED (2004) Thermal decomposition, combustion and fire-retardancy of polyurethanes—a review of the recent literature. Polym Int 53:1585–1610. https://doi.org/10.1002/pi.1314

    Article  CAS  Google Scholar 

  48. Cui Y, Pan H, Zhang J, Cao L, Zong C (2022) Influence of polydimethylsiloxane on the microstructure and properties of polyester thermoplastic polyurethane. J Polym Res 29:218. https://doi.org/10.1007/s10965-022-03079-2

    Article  CAS  Google Scholar 

  49. Cai C, Sun Q, Zhang K, Bai X, Liu P, Li A, Yu ZL, Li Q (2022) Flame-retardant thermoplastic polyurethane based on reactive phosphonate polyol. Fire Mater 46:130–137. https://doi.org/10.1002/fam.2959

    Article  CAS  Google Scholar 

  50. Savas LA, Deniz TK, Tayfun U, Dogan M (2017) Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polym Degrad Stab 135:121–129. https://doi.org/10.1016/j.polymdegradstab.2016.12.001

    Article  CAS  Google Scholar 

  51. Zaman I, Manshoor B, Khalid A, Araby S (2014) From clay to graphene for polymer nanocomposites—a survey. J Polym Res 21:429. https://doi.org/10.1007/s10965-014-0429-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Building and Housing Research Center (BHRC)/Fire Laboratory and Iran Polymer and Petrochemical Institute (IPPI) for supporting this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Naimi-Jamal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghi-Akbari, L., Naimi-Jamal, M.R. & Ahmadi, S. Flammability, smoke production, and mechanical properties of thermoplastic polyurethane composites with an intumescent flame-retardant system and nano-silica. Iran Polym J 32, 1165–1178 (2023). https://doi.org/10.1007/s13726-023-01188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01188-3

Keywords

Navigation