Skip to main content

Advertisement

Log in

Epoxyurethane polymer matrices for hemp woody core reinforced biocomposites synthesized with the use of plant-originated oils

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

To substitute synthetic components, three types of Si-containing organic–inorganic epoxyurethane polymer matrices including plant-originated oils were developed. Epoxidized soybean oil (ESO) or/and castor oil (CO) were used for the preparation of epoxy and isocyanate components, respectively. For obtaining fiber-reinforced biocomposites, the synthesized matrices were filled with 60 wt% of hemp woody core (HWC). The presence of covalent bonds between hydroxyl groups of filler and isocyanate groups of matrix was evidenced by Fourier transform infrared (FTIR) spectroscopy. The formation of such a chemical bond is considered to be an effective approach to overcome the most common problem of natural fiber-reinforced composites, namely the matrix/filler incompatibility, and therefore, poor interfacial adhesion and mechanical properties. The analysis of water absorption by the samples revealed it to be the lowest for the biocomposites based on the matrix with the largest content of triglycerides. The same composite including both plant oils was also characterized by the smallest coefficient of water molecules permeation (1.26 × 10–5 mm2/s). The study of mechanical properties showed that the tensile strength of all the samples was significantly improved upon reinforcing with HWC. Particularly, the values of tensile strength were the highest for ESO-containing composites (15.7 and 14.4 MPa).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article. For the data in our previous publications related to given study all the references are present in the text.

References

  1. Begum K, Islam MA (2013) Natural fiber as a substitute to synthetic fiber in polymer composites: a review. Res J Eng Sci 2:46–53

    Google Scholar 

  2. Mustapha R, Rahmat AR, Abdul Majid R, Mustapha SNH (2019) Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review. Polym-Plast Technol Mater 58:1311–1326. https://doi.org/10.1080/25740881.2018.1563119

    Article  CAS  Google Scholar 

  3. Sipião BLS, Reis LS, Paiva RLM, Capri MR, Mulinari DR (2015) In: Lignocellulosic polymer composites. In: Thakur VK (ed) processing, characterization and properties. Scrivener Publishing LLC, Beverly

    Google Scholar 

  4. Dixit S (2014) Degradation analysis of lignocellulosic fillers infused coir epoxy composites in different environmental conditions. Int J Lignocellul Prod 1:160–179. https://doi.org/10.22069/ijlp.2014.2073

    Article  Google Scholar 

  5. Brosius D (2006) Natural fiber composites slowly take root. Compos Technol 12:32–37

    Google Scholar 

  6. Di Landro L, Janszen G (2014) Composites with hemp reinforcement and bio-based epoxy matrix. Compos Part B Eng 67:220–226. https://doi.org/10.1016/j.compositesb.2014.07.021

    Article  CAS  Google Scholar 

  7. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  8. Mahesha GT, Subrahmanya BK, Padmaraja NH (2019) Biodegradable natural fiber reinforced polymer matrix composites. AIP Conf Proc doi 10(1063/1):5131588

    Google Scholar 

  9. Boquillon N (2006) Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites. J Appl Polym Sci 101:4037–4043. https://doi.org/10.1002/app.23133

    Article  CAS  Google Scholar 

  10. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019

    Article  CAS  Google Scholar 

  11. Manaila E, Craciun G, Ighigeanu D (2020) Water absorption kinetics in natural rubber composites reinforced with natural fibers processed by electron beam irradiation. Polymers 12:2437. https://doi.org/10.3390/polym12112437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shahzad A, Isaac DH (2014). In: Thakur VK (ed) Lignocellulosic polymer composites. Scrivener publishing LLC, Beverly

    Google Scholar 

  13. Lv J, Cheng Z, Wu H, He T, Qin J, Liu X (2020) In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement. Compos Part B Eng 182:107608. https://doi.org/10.1016/j.compositesb.2019.10

    Article  CAS  Google Scholar 

  14. Bledzki KA, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber. J Appl Polym Sci 59:1329–1336. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8%3c1329::AID-APP17%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  15. Liu W, Fei M, Qiu R (2017) Biocomposites from hemp fibers and acrylated epoxidized soybean oil-based resins. 21st Int Conf Compos Mater Proc Xi’an, China, pp. 20–25

  16. Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermal properties of bio-flourfilled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188. https://doi.org/10.1016/j.tca.2006.09.013

    Article  CAS  Google Scholar 

  17. Liu W, Chen T, Xie T, Qiu R (2016) Soybean oil-based thermosets with N-vinyl-2-pyrrolidone as crosslinking agent for hemp fiber composites. Compos Part A Appl Sci Manuf 82:1–7. https://doi.org/10.1016/j.compositesa.2015.11.035

    Article  CAS  Google Scholar 

  18. Felix JM, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci 42:609–620. https://doi.org/10.1002/app.1991.070420307

    Article  CAS  Google Scholar 

  19. Hua L, Flodin P, Ronnhult T (1987) Cellulose fiber-polyester composites with reduced water sensitivity (2)—surface analysis. Polym Comp 8:203–207. https://doi.org/10.1002/pc.750080309

    Article  CAS  Google Scholar 

  20. Zadorecki P, Flodin P (1986) Surface modification of cellulose fibers III. durability of cellulose–polyester composites under environmental aging. J Appl Polym Sci 31:1699–1707. https://doi.org/10.1002/app.1986.070310616

    Article  CAS  Google Scholar 

  21. Rachini A, Le Troedec M, Peyratout C, Smith A (2012) Chemical modification of hemp fibers by silane coupling agents. J Appl Polym Sci 123:601–610. https://doi.org/10.1002/app.34530

    Article  CAS  Google Scholar 

  22. Oushabi A, Hassani FO, Abboud Y, Sair S, Tanane O, El Bouari A (2018) Improvement of the interface bonding between date palm fibers and polymeric matrices using alkali-silane treatments. Int J Ind Chem 9:335–343. https://doi.org/10.1007/s40090-018-0162-3

    Article  CAS  Google Scholar 

  23. Singha AS, Rana AK (2012) Effect of silane treatment on physicochemical properties of lignocellulosic C. indica fiber. J Appl Polym Sci 124:2473–2484. https://doi.org/10.1002/app.35256

    Article  CAS  Google Scholar 

  24. Vaithylingam R, Ansari MNM, Shanks RA (2017) Recent advances in polyurethane based nanocomposites: a review. Polym-Plast Technol Eng 56:1528–1541. https://doi.org/10.1080/03602559.2017.1280683

    Article  CAS  Google Scholar 

  25. Yashchenko LM, Yarova NV, Vorontsova LO, Brovko OO (2020) Physical-mechanical properties of polymer composites reinforced with hemp wood core. Vopr him him Tehnol 5:104–111. https://doi.org/10.32434/0321-4095-2020-132-5-104-111(inUkrainian)

    Article  Google Scholar 

  26. Yashchenko LM (2020) Thermophysical and physico-mechanical characteristics of epoxyurethane composites. Ukr Chem J 86:134–143. https://doi.org/10.33609/2708-129X.86.8.2020.134-143

    Article  CAS  Google Scholar 

  27. Yashchenko LM, Yarova NV, Samoilenko TF, Brovko OO (2019) Synthesis of epoxy-urethane polymer matrix for biocomposite materials. Vopr him him Tehnol 1:73–79. https://doi.org/10.32434/0321-4095-2019-122-1-73-79(inUkrainian)

    Article  Google Scholar 

  28. Prydatko AB (1998) Organosilica polymer blends based on liquid glasses and isocyanates. Ph.D. thesis. Kyiv. (in Ukrainian)

  29. Meera KMS, Sankar RM, Jaisankar SN, Mandal AB (2013) Physicochemical studies on polyurethane/siloxane cros-linked films for hydrophobic surfaces by the sol-gel process. J Phys Chem B 117:2682–2694. https://doi.org/10.1021/jp3097346

    Article  CAS  Google Scholar 

  30. Samoilenko T, Yashchenko L, Yarova N, Brovko O (2022) Behaviour of modified epoxyurethanes reinforced with hemp wood core under accelerated weathering and soil burial test. Mater Today Commun 31:103508. https://doi.org/10.1016/j.mtcomm.2022.103508

    Article  CAS  Google Scholar 

  31. Fernandes FC, Kirwan K, Wilson PR, Coles SR (2019) Sustainable alternative composites using waste vegetable oil based resins. J Polym Environ 27:2464–2477. https://doi.org/10.1007/s10924-019-01534-8

    Article  CAS  Google Scholar 

  32. Zhang J, Hu S, Zhan G, Tang X, Yu Y (2013) Biobased nanocomposites from clay modified blend of epoxidized soybean oil and cyanate ester resin. Prog Org Coat 76:1683–1690. https://doi.org/10.1016/j.porgcoat.2013.07.017

    Article  CAS  Google Scholar 

  33. Miyagawa H, Mohanty AK, Burgueno R, Drzal LT, Misra M (2007) Novel biobased resins from blends of functionalized soybean oil and unsaturated polyester resin. J Polym Sci Pol Phys 45:698–704. https://doi.org/10.1002/polb.21059

    Article  CAS  Google Scholar 

  34. Chen T, Wu Y, Qiu J, Fei M, Qiu R, Liu W (2020) Interfacial compatibilization via in-situ polymerization of epoxidized soybean oil for bamboo fibers reinforced poly(lactic acid) biocomposites. Compos Part A Appl Sci Manuf 138:106066. https://doi.org/10.1016/j.compositesa.2020.106066

    Article  CAS  Google Scholar 

  35. Xia Y, Larock RC (2011) Preparation and properties of aqueous castor oil-based polyurethane–silica nanocomposite dispersions through a sol–gel process. Macromol Rapid Commun 32:1331–1337. https://doi.org/10.1002/marc.201100203

    Article  CAS  PubMed  Google Scholar 

  36. Jaisankar SN, Lakshminarayana Y, Radhakrishnan G, Ramasmi T (1996) Modified castor oil based polyurethane elastomers for one-shot process. Polym Plast Technol Eng 35:781–789. https://doi.org/10.1080/03602559608004060

    Article  CAS  Google Scholar 

  37. Mochane MJ, Mokhena TC, Mokhothu TH, Mtibe A, Sadiku ER, Ray SS, Ibrahim ID, Daramola OO (2019) Recent progress on natural fiber hybrid composites for advanced applications: a review. eXPRESS Polym Lett 13:159–198. https://doi.org/10.3144/expresspolymlett.2019.15

    Article  CAS  Google Scholar 

  38. Bledzki AK, Urbaniak M, Boettcher A, Berger C, Pilawka R (2013) Bio-based epoxies and composites for technical applications. Key Eng Mater 559:1–6. https://doi.org/10.4028/www.scientific.net/KEM.559.1

    Article  CAS  Google Scholar 

  39. Mittal V, Saini R, Sinha S (2016) Natural fiber-mediated epoxy composites- a review. Compos Part B Eng 99:425–435. https://doi.org/10.1016/j.compositesb.2016.06.051

    Article  CAS  Google Scholar 

  40. Liu Z, Erhan SZ, Akin DE, Barton FE (2006) “Green” composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites. J Agric Food Chem 54:2134–2137. https://doi.org/10.1021/jf0526745

    Article  CAS  PubMed  Google Scholar 

  41. Panthapulakkal S, Sain M (2007) Studies on the water absorption properties of short hemp-glass fiber hybrid polypropylene composites. J Compos Mater 41:1871–1883. https://doi.org/10.1177/0021998307069900

    Article  CAS  Google Scholar 

  42. Stevulova N, Estokova A, Cigasova J, Schwarzova I, Kacik F, Geffert A (2017) Thermal degradation of natural and treated hemp hurds under air and nitrogen atmosphere. J Therm Anal Calorim 128:1649–1660. https://doi.org/10.1007/s10973-016-6044-z

    Article  CAS  Google Scholar 

  43. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  CAS  Google Scholar 

  44. Liu W, Xie T, Qiu R (2016) Improvement of properties for biobased composites from modified soybean oil and hemp fibers: dual role of diisocyanate. Compos Part A Appl Sci Manuf 90:278–285. https://doi.org/10.1016/j.compositesa.2016.07.018

    Article  CAS  Google Scholar 

  45. Bohdanova OF, Dombrovska OP, Babich SS, Dombrovskyi AH (2018) Determining the possibility of obtaining fibrous semi-finished products from non-narcotic hemp. Visnyk KhNTU 64:67–74

    Google Scholar 

  46. Kuzmina TO, Shynkaruk MV, Shamshura MV (2017) Analysis and ways of product development from hemp raw materials. Visnyk KhNTU 60:120–124

    Google Scholar 

  47. Manaia JP, Manaia AT, Rodriges L (2019) Industrial hemp fibers: an overview. Fibers 7(12):106. https://doi.org/10.3390/fib7120106

    Article  CAS  Google Scholar 

  48. Balčiūnas G, Vėjelis S, Vaitkus S, Kairytė A (2013) Physical properties and structure of composite made by using hemp hurds and different binding materials. Proced Eng 57:159–166. https://doi.org/10.1016/j.proeng.2013.04.023

    Article  CAS  Google Scholar 

  49. Zhang Y, Remadevi R, Hinestroza JP, Wang X, Naebe M (2020) Transparent ultraviolet (UV)-shielding films made from waste hemp hurd and polyvinyl alcohol (PVA). Polymers 12:1190. https://doi.org/10.3390/polym12051190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilhelm C, Gardette J-L (1997) Infrared analysis of the photochemical behaviour of segmented polyurethanes: 1. Aliphatic poly(ester-urethane). Polymer 38:4019–4031. https://doi.org/10.1016/S0032-3861(97)00353-4

    Article  CAS  Google Scholar 

  51. Smith AL, Elving PJ, Winefordner JD, Kolthoff IM (1979) Applied infrared spectroscopy: fundamentals techniques and analytical problem-solving. Wiley, New York

    Google Scholar 

  52. Gao T, He Z, Lloyd HH, ShokouhiMehr H, Soucek MD (2019) Outdoor exposure and accelerated weathering of polyurethane/polysiloxane hybrid coatings. Prog Org Coat 130:44–57. https://doi.org/10.1016/j.porgcoat.2019.01.046

    Article  CAS  Google Scholar 

  53. Bhargava S, Kubota M, Lewis RD, Advani SG, Prasad AK, Deitzel JM (2015) Ultraviolet, water, and thermal aging studies of a waterborne polyurethane elastomer-based high reflectivity coating. Prog Org Coat 79:75–82. https://doi.org/10.1016/j.porgcoat.2014.11.005

    Article  CAS  Google Scholar 

  54. Dehant I, Dants R, Kimmer V, Shmolke R (1976) Infrared spectroscopy of polymers. Khimiya, Moscow (in Russian)

  55. Prech E, Bulmann F, Affolter K (2006) Determination of the structure of organic compounds. Spectral data tables. Mir: BINOM, Moscow (in Russian)

  56. Brovko OO, Gorbach LA, Lutsyk OD, Sergeeva LM, Lebedev EV (2013) Peculiarities of formation and properties of organic-inorganic systems based on sodium silicate. Polym J 35(4):375–383

    Google Scholar 

  57. Öztürk C, Küsefoğlu SH (2010) Polymerization of epoxidized soybean oil with maleinized soybean oil and maleic anhydride grafted polypropylene mixtures. J Appl Polym Sci 118:3311–3317. https://doi.org/10.1002/app.32155

    Article  CAS  Google Scholar 

  58. Tsujimoto T, Takeshita K, Uyama H (2016) Bio-based epoxy resins from epoxidized plant oils and their shape memory behaviors. J Am Oil Chem Soc 93:1663–1669. https://doi.org/10.1007/s11746-016-2907-5

    Article  CAS  Google Scholar 

  59. Bhoopathi R, Ramesh M (2020) Influence of eggshell nanoparticles and effect of alkalization on characterization of industrial hemp fibre reinforced epoxy composites. J Polym Environ 28:2178–2190. https://doi.org/10.1007/s10924-020-01756-1

    Article  CAS  Google Scholar 

  60. Kannan TG, Wu CM, Cheng KB, Wang CY (2013) Effect of reinforcement on the mechanical and thermal properties of flax/polypropylene interwoven fabric composites. J Ind Text 42:417–433. https://doi.org/10.1177/1528083712442695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetiana Samoilenko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilenko, T., Yashchenko, L., Yarova, N. et al. Epoxyurethane polymer matrices for hemp woody core reinforced biocomposites synthesized with the use of plant-originated oils. Iran Polym J 32, 403–415 (2023). https://doi.org/10.1007/s13726-022-01136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01136-7

Keywords

Navigation