Skip to main content

Advertisement

Log in

Preparation and characterization of diamine-functional bisphthalonitrile resins with self-promoted cure behavior

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The sluggish polymerization is one of the major problems of the high-performance phthalonitrile-based resins that needs to be solved urgently. In the present study, two types of new bisphthalonitrile resins 3,3'-((propane-2,2-diylbis(2-amino-4,1-phenylene))bis(oxy))diphthalonitrile (PN-m) and 4,4'-((propane-2,2-diylbis(2-amino-4,1-phenylene))bis(oxy))diphthalonitrile (PN-p) containing diamino groups were synthesized from 2,2'-bis(3-amino-4-hydroxylphenyl)propane and 3-nitrophthalonitrile/4-nitrophthalonitrile by nucleophilic substitution. Fourier-transform infrared (FTIR), nuclear magnetic resonance (1HNMR and 13CNMR), and time of flight mass spectroscopy (TOF–MS) were used to identify the chemical structures of new bisphthalonitrile resins. The different self-catalyzed curing behavior, owing to different positions of cyano groups on the benzene ring were confirmed by differential scanning calorimetry (DSC) and FTIR techniques. The thermal stability of the cured diamine-functional bisphthalonitriles was determined by thermogravimetric analysis (TGA) under a nitrogen atmosphere. The 5% mass-loss temperatures (T5%) and 10% mass-loss temperatures (T10%) of PN-p polymers were observed to be 413–498 °C and 486–562 °C, respectively, which were higher than those of the PN-m polymers (i.e., 408–497 °C and 477–559 °C, respectively). The char yields at 800 °C for PN-m and PN-p under a nitrogen flow were 73.58–78.76% and 74.22–79.14%, respectively. After the thermal treatment at 375 °C, the glass transition temperature (Tg) above 400 °C has been observed for both polymers. Regarding the adhesive qualities, PN-p showed a comparatively high lap shear strength of more than 15 MPa at 300 °C. Therefore, these diamine-functional bisphthalonitriles are suitable as resin matrices for structural metal-bonding applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Yuan P, Liu Y, Zeng K, Yang G (2015) Synthesis and characterization of a new imide compound containing phthalonitrile and phenylethynyl end-groups. Des Monomers Polym 18:343–349. https://doi.org/10.1080/15685551.2015.1012623

    Article  CAS  Google Scholar 

  2. Gu H, Gao C, Du A, Guo Y, Zhou H, Zhao T, Naik N, Guo Z (2022) An overview of high-performance phthalonitrile resin: fabrication and electronic applications. J Mater Chem C 10:2925–2937. https://doi.org/10.1039/D1TC05715D

    Article  CAS  Google Scholar 

  3. Lei W, Wang D, Li Y, Li K, Liu Q, Wang P, Feng W, Liu Q, Yang X (2022) High temperature resistant polymer foam based on bi-functional benzoxazine-phthalonitrile resin. Polym Degrad Stab 201:110003. https://doi.org/10.1016/j.polymdegradstab.2022.110003

    Article  CAS  Google Scholar 

  4. He X, Qi J, Chen M, Lv J, Xiao H, Hu J, Zeng K, Yang G (2022) Preparation of novel bio-based imine-containing phthalonitrile resin through the nucleophilic reaction in green solvent. Polymer 253:124973. https://doi.org/10.1016/j.polymer.2022.124973

    Article  CAS  Google Scholar 

  5. Yakovlev MV, Morozov OS, Afanaseva ES, Bulgakov BA, Babkin AV, Kepman AV (2020) Tri-functional phthalonitrile monomer as stiffness increasing additive for easy processable high performance resins. React Funct Polym 146:104409. https://doi.org/10.1016/j.reactfunctpolym.2019.104409

    Article  CAS  Google Scholar 

  6. Liu X, Wang Z, Sun J, Zhao Z, Zhan S, Guo Y, Zhou H, Liu W, Wang J, Zhao T (2021) Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities. Compos Sci Technol 202:108558. https://doi.org/10.1016/j.compscitech.2020.108558

    Article  CAS  Google Scholar 

  7. Nechausov SS, Aleksanova AA, Morozov OS, Bulgakov BA, Babkin AV, Kepman AV (2021) Low-melting phthalonitrile monomers containing maleimide group: synthesis, dual-curing behavior, thermal and mechanical properties. React Funct Polym 164:104932. https://doi.org/10.1016/j.reactfunctpolym.2021.104932

    Article  CAS  Google Scholar 

  8. Liu C, Sun M, Zhang B, Zhang X, Xue G, Zhang X (2020) Curing kinetics, thermal and adhesive properties of phthalonitrile/aromatic diamine systems. Iran Polym J 29:67–75. https://doi.org/10.1007/s13726-019-00775-7

    Article  CAS  Google Scholar 

  9. Xu X, Xu M, Liu T, Ren D, Liu X (2022) Understanding the curing behaviors and properties of phthalonitrile containing benzoxazine with a new type of aniline curing agent. Polym Test 107:107487. https://doi.org/10.1016/j.polymertesting.2022.107487

    Article  CAS  Google Scholar 

  10. Chen X, Cai Y, Qu X, Chen J, Zheng D (2022) Preparation of a self-catalyzed amino-epoxy phthalonitrile resin with a large processing window. J Mater Sci 57:1545–1553. https://doi.org/10.1007/s10853-021-06744-x

    Article  CAS  Google Scholar 

  11. He X, Wu H, Lv J, Chen M, Zhou T, Luo Y, Hu J, Zeng K, Yang G (2020) Study on the curing kinetics of phthalonitrile promoted by bio-tyrosine cyclic peptide. Polym Test 90:106753. https://doi.org/10.1016/j.polymertesting.2020.106753

    Article  CAS  Google Scholar 

  12. Zhang H, Wang B, Hu J, Wang D, Zou Y, Yang Y (2021) Curing behavior studies of phenol-containing phthalonitrile monomer for advanced composite materials. Thermochim Acta 696:178837. https://doi.org/10.1016/j.tca.2020.178837

    Article  CAS  Google Scholar 

  13. Jia Y, Bu X, Dong J, Zhou Q, Liu M, Wang F, Wang M (2022) Catalytic polymerization of phthalonitrile resins by carborane with enhanced thermal oxidation resistance: experimental and molecular simulation. Polymers-basel 14:219. https://doi.org/10.3390/polym14010219

    Article  CAS  Google Scholar 

  14. Alemdar A, Özkaya AR, Bulut M (2009) Synthesis, spectroscopy, electrochemistry and in situ spectroelectrochemistry of partly halogenated coumarin phthalonitrile and corresponding metal-free, cobalt and zinc phthalocyanines. Polyhedron 28:3788–3796. https://doi.org/10.1016/j.poly.2009.07.060

    Article  CAS  Google Scholar 

  15. Zhao F-H, Liu R-J, Yu X-Y, Naito K, Tang C-C, Qu X-W, Zhang Q-X (2015) Synthesis of a novel naphthyl-based self-catalyzed phthalonitrile polymer. Chin Chem Lett 26:727–729. https://doi.org/10.1016/j.cclet.2015.03.025

    Article  CAS  Google Scholar 

  16. Augustine D, Mathew D, Nair CPR (2013) Phenol-containing phthalonitrile polymers-synthesis, cure characteristics and laminate properties. Polym Int 62:1068–1076. https://doi.org/10.1002/pi.4393

    Article  CAS  Google Scholar 

  17. Hu J, Liu Y, Jiao Y, Ji S, Sun R, Yuan P, Zeng K, Pu X, Yang G (2015) Self-promoted phthalimide-containing phthalonitrile resins with sluggish curing process and excellent thermal stability. RSC Adv 5:16199–16206. https://doi.org/10.1039/C4RA17306F

    Article  CAS  Google Scholar 

  18. Pu Y, Xie H, He X, Lv J, Zhu Z, Hong J, Zeng K, Hu J, Yang G (2022) The curing reaction of phthalonitrile promoted by sulfhydryl groups with high curing activity. Polymer 252:124948. https://doi.org/10.1016/j.polymer.2022.124948

    Article  CAS  Google Scholar 

  19. Liao S, Wu H, He X, Hu J, Li R, Liu Y, Lv J, LiuY LZ, Zeng K, Yang G (2020) Promoting effect of methyne/methylene moiety of bisphenol E/F on phthalonitrile resin curing: expanding the structural design route of phthalonitrile resin. Polymer 210:123001. https://doi.org/10.1016/j.polymer.2020.123001

    Article  CAS  Google Scholar 

  20. Liu C, Sun M, Zhang B, Zhang X, Xue G, Zhang X (2019) Diamine-functional bisphthalonitrile: synthesis, characterization and its application in curing epoxy resin. Eur Polym J 121:109304. https://doi.org/10.1016/j.eurpolymj.2019.109304

    Article  CAS  Google Scholar 

  21. Zhou H, Badashah A, Luo Z, Liu F, Zhao T (2011) Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group. Polym Advan Technol 22:1459–1465. https://doi.org/10.1002/pat.2018

    Article  CAS  Google Scholar 

  22. Guo H, Chen Z, Zhang J, Yang X, Zhao R, Liu X (2012) Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites. J Polym Res 19:9918. https://doi.org/10.1007/s10965-012-9918-1

    Article  CAS  Google Scholar 

  23. Karabatsos GJ, Taller RA (1963) Structural studies by nuclear magnetic resonance. V. Phenylhydrazones. J Am Chem Soc 85:3624–3629. https://doi.org/10.1021/ja00905a020

    Article  CAS  Google Scholar 

  24. Sheng L, Yin C, Xiao J (2016) A novel phthalonitrile monomer with low post cure temperature and short cure time. RSC Adv 6:22204–22212. https://doi.org/10.1039/C5RA25431K

    Article  CAS  Google Scholar 

  25. Wang A, Dayo AQ, Zu L, Xu Y, Lv D, Song S, Tang T, Liu W, Wang J, Gao B (2018) Bio-based phthalonitrile compounds: synthesis, curing behavior, thermomechanical and thermal properties. React Funct Polym 127:1–9. https://doi.org/10.1016/j.reactfunctpolym.2018.03.017

    Article  CAS  Google Scholar 

  26. Liu T, Yang Y, Wang T, Wang H, Zhang H, Su Y, Jiang Z (2014) Synthesis and properties of poly(aryl ether ketone)-based phthalonitrile resins. Polym Eng Sci 54:1695–1703. https://doi.org/10.1002/pen.23709

    Article  CAS  Google Scholar 

  27. Gao C, Gu H, Du A, Zhou H, Pan D, Naik N, Guo Z (2021) Polyaniline facilitated curing of phthalonitrile resin with enhanced processibility and mechanical property. Polymer 219:123533. https://doi.org/10.1016/j.polymer.2021.123533

    Article  CAS  Google Scholar 

  28. Chen Z, Guo H, Tang H, Yang X, Xu M, Liu X (2013) Preparation and properties of bisphenol A-based bis-phthalonitrile composite laminates. J Appl Polym Sci 129:2621–2628. https://doi.org/10.1002/app.38986

    Article  CAS  Google Scholar 

  29. Terekhov VE, Aleshkevich VV, Afanaseva ES, Nechausov SS, Babkin AV, Bulgakov BA, Kepman AV, Avdeev VV (2019) Bis (4-cyanophenyl) phenyl phosphate as viscosity reducing comonomer for phthalonitrile resins. React Funct Polym 139:34–41. https://doi.org/10.1016/j.reactfunctpolym.2019.03.010

    Article  CAS  Google Scholar 

  30. Keller TM (1988) Phthalonitrile-based high temperature resin. J Polym Sci A Polym Chem 26:3199–3212. https://doi.org/10.1002/pola.1988.080261207

    Article  CAS  Google Scholar 

  31. Wang G, Han Y, Guo Y, Sun J, Wang S, Zhou H, Zhao T (2019) Phthalonitrile terminated fluorene based copolymer with outstanding thermal and mechanical properties. Eur Polym J 113:1–11. https://doi.org/10.1016/j.eurpolymj.2019.01.040

    Article  CAS  Google Scholar 

  32. Banea MD, De Sousa FSM, Da Silva LFM, Campilho RDSG, Bastos de Pereira AM (2011) Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive. J Adhes Sci Technol 25:2461–2474. https://doi.org/10.1163/016942411X580144

    Article  CAS  Google Scholar 

  33. Yu P, Zhang Y, Yang X, Pan L, Dai Z, Xue M, Liu Y, Wang W (2019) Synthesis and characterization of asymmetric bismaleimide oligomers with improved processability and thermal/mechanical properties. Polym Eng Sci 59:2265–2272. https://doi.org/10.1002/pen.25229

    Article  CAS  Google Scholar 

  34. Wang K, Yuan X, Zhan M (2017) Comparison between microwave and thermal curing of a polyimide adhesive end-caped with phenylethynyl groups. Int J Adhes Adhes 74:28–34. https://doi.org/10.1016/j.ijadhadh.2016.12.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, B., Sun, M. et al. Preparation and characterization of diamine-functional bisphthalonitrile resins with self-promoted cure behavior. Iran Polym J 32, 177–186 (2023). https://doi.org/10.1007/s13726-022-01118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01118-9

Keywords

Navigation