Skip to main content
Log in

Electrospun rocket seed (Eruca sativa Mill) mucilage/polyvinyl alcohol nanofibers: fabrication and characterization

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The production of rocket seed mucilage (RSM)/polyvinyl alcohol (PVA) nanofibers has been carried out by electrospinning method followed by their characterization. In this study, 1% RSM and 10% PVA were used for nanofiber production. The determined RSM/PVA ratio was 60:40. The morphology of nanofibers was studied using scanning electron microscopy (SEM). In addition, Fourier transform infrared spectrometry (FTIR) and X-ray diffractometry (XRD) analyses were used to determine the crystal structure of the chemical composition. According to SEM images, beadless, uniform, and smooth nanofibers were produced. The mean diameter of the nanofibers was 102.3 nm. The diffractogram of RSM/PVA nanofibers was similar to RSM diffractogram, namely two slight crystalline peaks at about 2θ ≈ 14.19° and 26.62°. A broad peak was obtained at 2θ ≈ 21.21°. This result shows that the nanofiber has some degree of amorphous structure, revealing that the crystalline structure of PVA is decomposed during electrospinning. There was no chemical interaction between RSM and PVA when producing RSM/PVA nanofibers, and PVA improved the physical properties of RSM. In conclusion, this research is the first study on nanofiber production with rocket seed mucilage and PVA. The produced nanofibers can be used in food and pharmaceutical industry, and in the encapsulating bioactive compounds. These nanofibers are more advantageous in biosafety, biocompatibility, and biodegradability compared to synthetic materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data from this study are available to the journal. For other data sets, the corresponding author should be contacted.

References

  1. Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll 39:19–26. https://doi.org/10.1016/j.foodhyd.2013.12.022

    Article  CAS  Google Scholar 

  2. Alghoraibi I, Alomari S (2018) Different methods for nanofiber design and fabrication. In: Barhoum A, Bechelany M, Hamdy Makhlouf AS (eds) Handbook of nanofibers. Springer, Cham, pp 1–46

    Google Scholar 

  3. Almetwally AA, El-Sakhawy M, Elshakankery MH, Kasem MH (2017) The technology of nanofibers: production techniques and properties-critical review. J Text Assoc 78:5–14

    Google Scholar 

  4. Fathi M (2015) Nano-Delivery system for development of functional food: production, application and trends. In: Govil GN (ed) Nutraceuticals and functional food. Studium Press, New Delhi, India, pp 270–288

    Google Scholar 

  5. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  6. Das A, Balakrishnan N, Joyner JD, Medhavi N, Manaf O, Jabeen Fatima MJ, Prasanth R (2021) Electrospinning: the state of the art technique for producing nanofibers and nanofibrous membranes for advanced engineering applications. Electrospin Adv Energy Storage Appl 2021:23–71

    Google Scholar 

  7. Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5:013403. https://doi.org/10.1063/1.3567097

    Article  CAS  Google Scholar 

  8. https://www.researchgate.net/figure/Schematic-view-of-electrospinningprocess_fig9_305662363

  9. Garg G, Sharma V (2014) Eruca sativa (L.): botanical description, crop improvement, and medicinal properties. J Herbs Spices Med Plants 20:171–182. https://doi.org/10.1080/10496475.2013.848254

    Article  CAS  Google Scholar 

  10. Koocheki A, Razavi SMA, Hesarinejad MA (2012) Effect of extraction procedures on functional properties of Erucasativa seed mucilage. Food Biophys 7:84–92. https://doi.org/10.1007/s11483-011-9245-9

    Article  Google Scholar 

  11. Gulfraz M, Sadiq A, Tariq H, Imran M, Qureshi R, Zeenat A (2011) Phytochemical analysis and antibacterial activity of Eruca sativa seed. Pak J Bot 43:1351–1359

    CAS  Google Scholar 

  12. Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valgimigli L (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agric Food Chem 53:2475–2482. https://doi.org/10.1021/jf047945a

    Article  CAS  Google Scholar 

  13. Melchini A, Costa C, Traka N, Miceli N, Mithen R, Pasquale RD, Trovato A (2009) Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells. Food Chem Toxicol 47:1430–1436. https://doi.org/10.1016/j.fct.2009.03.024

    Article  CAS  Google Scholar 

  14. El-Missiry MA, Am EG (2000) Amelioration of alloxan induced diabetes mellitus and oxidative stress in rats by oil of Eruca sativa seeds. Ann Nutr Metab 44:97–100. https://doi.org/10.1159/000012829

    Article  CAS  Google Scholar 

  15. Alqasoumi S, Al-Sohaibani M, Al-Howiriny T, Al-Yahya M, Rafatullah S (2009) Rocket “Eruca sativa”: a salad herb with potential gastric anti-ulcer activity. World J Gastroenterol 15:1958–1965. https://doi.org/10.3748/wjg.15.1958

    Article  CAS  Google Scholar 

  16. Abd-Elsalam RM, El Badawy SA, Ogaly HA, Ibrahim FM, Farag OM, Ahmed KA (2021) Eruca sativa seed extract modulates oxidative stress and apoptosis and up-regulates the expression of Bcl-2 and Bax genes in acrylamide-induced testicular dysfunction in rats. Environ Sci Pollut Res 28:53249–53266. https://doi.org/10.1007/s11356-021-14532-y

    Article  CAS  Google Scholar 

  17. Khan MAJ, Khan RJ (1985) Insecticidal effects of indigenous vegetable oils (taramira and artemisia) on some rice delphacids in Pakistan. Pak J Sci Ind Res 28:428–429

    CAS  Google Scholar 

  18. Narang DD, Atwal AS (1989) Effect of leaf extracts containing glucosinolates on the biology of mustard aphid, Lipaphis erysimi (Kalt.). Ind J Ecol 13:307–312

    Google Scholar 

  19. Kutlu G, Akcicek A, Bozkurt F, Karasu S, Tekin-Cakmak ZH (2021) Rocket seed (Eruca sativa Mill) gum: physicochemical and comprehensive rheological characterization. Food Sci Technol 2021:42. https://doi.org/10.1590/fst.69620

    Article  Google Scholar 

  20. Golkar P, Kalani S, Allafchian AR, Mohammadi H, Jalali SAH (2019) Fabrication and characterization of electrospun Plantago major seed mucilage/PVA nanofibers. J Appl Polym Sci 136:47852. https://doi.org/10.1002/APP.47852

    Article  Google Scholar 

  21. Gaaz T, Sulong A, Akhtar M, Kadhum A, Mohamad A, Al-Amiery A (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20:22833–22847. https://doi.org/10.3390/molecules201219884

    Article  CAS  Google Scholar 

  22. Kurd F, Fathi M, Shekarchizadeh H (2017) Basil seed mucilage as a new source for electrospinning: production and physicochemical characterization. Int J Biol Macromol 95:689–695. https://doi.org/10.1016/j.ijbiomac.2016.11.116

    Article  CAS  Google Scholar 

  23. Fahami A, Fathi M (2018) Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery. Food Hydrocoll 81:31–38. https://doi.org/10.1016/j.foodhyd.2018.02.008

    Article  CAS  Google Scholar 

  24. Turan K, Akcan M, Kalfa OM (2021) Preparation characterization and antibacterial activity of Malva Sylvestris L. seed extract containing novel electrospun PVA nanofibers. Gazi Univ J Sci 34:987–998

    Google Scholar 

  25. Tekin MD, Kalfa OM (2022) Preconcentration of some heavy metals with novel electrospun nanofiber including Quince seed mucilage. Water Air Soil Pollut 233:1–14. https://doi.org/10.1007/s11270-022-05680-z

    Article  CAS  Google Scholar 

  26. Tian D, Yu DN, Xu YM, Ding XY, Zhang ZY, Wan CL, He JH (2020) Electrospun mussel-derived silk fibers. Recent Patents Nanotechnol 14:14–20. https://doi.org/10.2174/1872210513666190426145024

    Article  CAS  Google Scholar 

  27. Zhou CJ, Li Y, Yao SW, He JH (2019) Silkworm-based silk fibers by electrospinning. Results Phys 15:102646. https://doi.org/10.1016/j.rinp.2019.102646

    Article  Google Scholar 

  28. Zhou CJ, Chen C, Zhou HY, He JH (2019) Fabrication of latex-based nanofibers by electrospinning. Recent Patent Nanotechnol 13:202–205. https://doi.org/10.2174/1872210513666190925160735

    Article  CAS  Google Scholar 

  29. Yu DN, Tian D, Zhou CJ, He JH (2019) Wetting and supercontraction properties of spider-based nanofibers. Therm Sci 23:2189–2193. https://doi.org/10.2298/TSCI1904189Y

    Article  Google Scholar 

  30. Yu DN, Tian D, He JH (2018) Snail-based nanofibers. Mater Lett 220:5–7. https://doi.org/10.1016/j.matlet.2018.02.076

    Article  CAS  Google Scholar 

  31. Karazhiyan H (2008) Extraction optimization and physical properties of cress seed hydrocolloid using response surface methodology. Doctoral dissertation, PhD thesis, Ferdowsi University of Mashhad, Iran

  32. Jafari SM, Mahdavi-Khazaei K, Hemmati-Kakhki A (2016) Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydr Polym 140:20–25. https://doi.org/10.1016/j.carbpol.2015.11.079

    Article  CAS  Google Scholar 

  33. Santos C, Silva CJ, Büttel Z, Guimarães R, Pereira SB, Tamagnini P, Zille A (2014) Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydr Polym 99:584–592. https://doi.org/10.1016/j.carbpol.2013.09.008

    Article  CAS  Google Scholar 

  34. Hadad S, Goli SAH (2018) Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. Int J Biol Macromol 114:408–414. https://doi.org/10.1016/j.ijbiomac.2018.03.154

    Article  CAS  Google Scholar 

  35. Taheri A, Razavi SMA (2015) Fabrication of cress seed gum nanoparticles, an anionic polysaccharide, using desolvation technique: an optimization study. Bio Nano Sci 5:104–116. https://doi.org/10.1007/s12668-015-0169-6

    Article  Google Scholar 

  36. Akcicek A, Bozkurt F, Akgül C, Karasu S (2021) Encapsulation of olive pomace extract in rocket seed gum and chia seed gum nanoparticles: characterization, antioxidant activity and oxidative stability. Foods 10:1735. https://doi.org/10.3390/foods10081735

    Article  CAS  Google Scholar 

  37. Allafchian AR, Kalani S, Golkar P, Mohammadi H, Jalali SAH (2020) A comprehensive study on Plantago ovata/PVA biocompatible nanofibers: fabrication, characterization, and biological assessment. J Appl Polym Sci 137:49560. https://doi.org/10.1002/app.49560

    Article  CAS  Google Scholar 

  38. Islam MS, Rahaman MS, Yeum JH (2015) Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites. Carbohydr Polym 115:69–77. https://doi.org/10.1016/j.carbpol.2014.08.086

    Article  CAS  Google Scholar 

  39. Motamedi AS, Mirzadeh H, Hajiesmaeilbaigi F, Bagheri-Khoulenjani S, Shokrgozar MA (2017) Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog Biomat 6:113–123. https://doi.org/10.1007/s40204-017-0071-0

    Article  CAS  Google Scholar 

  40. Abd El-aziz AM, El-Maghraby A, Taha NA (2016) Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from waste water. Arab J Chem 10:1052–1060. https://doi.org/10.1016/j.arabjc.2016.09.025

    Article  CAS  Google Scholar 

  41. Ullah S, Hashmi M, Hussain N, Ullah A, Sarwar MN, Saito Y, Kim SH, Kim IS (2020) Stabilized nanofibers of polyvinyl alcohol (PVA) crosslinked by unique method for efficient removal of heavy metal ions. J Water Process Eng 33:101111. https://doi.org/10.1016/j.jwpe.2019.101111

    Article  Google Scholar 

  42. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48:6913–6922. https://doi.org/10.1016/j.polymer.2007.09.017

    Article  CAS  Google Scholar 

  43. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  CAS  Google Scholar 

  44. Priya S, Batra U, Samshritha RN, Sharma S, Chaurasiya A, Singhvi G (2022) Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: a review. Int J Biol Macromol 218:209–224. https://doi.org/10.1016/j.ijbiomac.2022.07.118

    Article  CAS  Google Scholar 

  45. Sherahi M, Fathi M, Zhandari F, Hashemi SMB, Rashidi A (2017) Structural characterization and physicochemical properties of Descurainia sophia seed gum. Food Hydrocoll 66:82–89. https://doi.org/10.1016/j.foodhyd.2016.12.010

    Article  CAS  Google Scholar 

  46. Kačuráková M, Belton PS, Wilson RH, Hirsch J, Ebringerová A (1998) Hydration properties of xylan-type structures: an FTIR study of xylooligosaccharides. J Sci Food Agric 77:38–44. https://doi.org/10.1002/(SICI)1097-0010(199805)77:1%3c38::AID-JSFA999%3e3.0.CO;2-5

    Article  Google Scholar 

  47. Park J, Lee HW, Chae DK, Oh W, Yun JD, Deng Y, Yeum JH (2009) Electrospinning and characterization of poly (vinyl alcohol)/chitosan oligosaccharide/clay nanocomposite nanofibers in aqueous solutions. Colloid Polym Sci 287:943–950. https://doi.org/10.1007/s00396-009-2050-z

    Article  CAS  Google Scholar 

  48. Rezaei A, Tavanai H, Nasirpour A (2016) Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin. Int J Biol Macromol 91:536–543. https://doi.org/10.1016/j.ijbiomac.2016.06.005

    Article  CAS  Google Scholar 

  49. Yang R, He J, Xu L, Yu J (2009) Bubble-electrospinning for fabricating nanofibers. Polymer 50:5846–5850. https://doi.org/10.1016/j.polymer.2009.10.021

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadet Çelikozlu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Research ınvolving humans and animals statement

This study does not include animal or human experimentation.

Informed consent

Informed consent is not required as no animal or human subjects were used in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, M.D., Çelikozlu, S. & Aydin, H. Electrospun rocket seed (Eruca sativa Mill) mucilage/polyvinyl alcohol nanofibers: fabrication and characterization. Iran Polym J 32, 203–211 (2023). https://doi.org/10.1007/s13726-022-01117-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01117-w

Keywords

Navigation