Skip to main content

Advertisement

Log in

Optimization of processing parameters in poly(lactic acid)-reinforced acetylated starch composite films by response surface methodology

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The aim of this study was to improve the compatibility of starch with poly(lactic acid) (PLA) through the modification of corn starch by acetylation. As revealed from the NMR hydrogen spectra, three acetylated starch (ACS) with different degrees of substitution were successfully prepared. The ACS/PLA blended film was prepared by solution casting method. In accordance with the SEM results, the tensile strength and water resistance of ACS/PLA blend film improved when starch compatibility with PLA increased with more starch replacement. The initial thermal degradation temperature and decomposition interval of the blended film were significantly increased, in accordance with the obtained TG data. In addition, based on the single-factor experiments, a mathematical model of the quadratic polynomial regression equation between the process parameters (starch substitution (DS), PLA content, and glyceryl triacetate (GTA) content) and the tensile properties of the ACS/PLA blended film was constructed using the response surface method. On the basis of this model, optimal processing parameters with the least amount of PLA addition were required and the maximum tensile strength of the blended films could be calculated. The model was subsequently verified experimentally to be highly reliable. The model results produced in this study can also be used as a reference to extend the application of ACS/PLA blended film in food packaging, medical and agricultural floor film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Hornung PS, Avila S, Masisi K, Malunga LN, Lazzarotto M, Schnitzler E, Ribani RH, Beta T (2018) Green development of biodegradable films based on native yam (dioscoreaceae) starch mixtures. Starch 70:1700234. https://doi.org/10.1002/star.201700234

    Article  CAS  Google Scholar 

  2. Domene-Lopez D, Guillen MM, Martin-Gullon I, Garcia-Quesada JC, Montalban MG (2018) Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohyd Polym 202:299–305. https://doi.org/10.1016/j.carbpol.2018.08.137

    Article  CAS  Google Scholar 

  3. Dobrucka R (2019) Bioplastic packaging materials in circular economy. Logforum. 15:129–137

    Article  Google Scholar 

  4. Dai LM, Zhang J, Cheng F (2019) Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int J Biol Macromol 132:897–905. https://doi.org/10.1016/j.ijbiomac.2019.03.197

    Article  CAS  PubMed  Google Scholar 

  5. Nesic A, Cabrera-Barjas G, Dimitrijevic-Brankovic S, Davidovic S, Radovanovic N, Delattre C (2019) Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25:135. https://doi.org/10.3390/molecules25010135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koh JJ, Zhang X, He C (2018) Fully biodegradable poly(lactic acid)/starch blends: a review of toughening strategies. Int J Biol Macromol 109:99–113. https://doi.org/10.1016/j.ijbiomac.2017.12.048

    Article  CAS  PubMed  Google Scholar 

  7. Zuo Y, Gu J, Cao J, Wei S, Tan H, Zhang Y (2015) Effect of starch/polylactic acid ratio on the interdependence of two-phase and the properties of composites. JWuhan Univ TechnolMater Sci Ed 30:1108–1114. https://doi.org/10.1007/s11595-015-1280-9

    Article  CAS  Google Scholar 

  8. Yang X, Finne-Wistrand A, Hakkarainen M (2013) Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites. Compos Sci Technol 86:149–156. https://doi.org/10.1016/j.compscitech.2013.07.013

    Article  CAS  Google Scholar 

  9. Martinez Villadiego K, Arias Tapia MJ, Useche J, Escobar Macías D (2021) Thermoplastic starch (TPS)/polylactic acid (PLA) blending methodologies: a review. J Polym Environ 30:75–91. https://doi.org/10.1007/s10924-021-02207-1

    Article  CAS  Google Scholar 

  10. Colussi R, Pinto VZ, El Halal SLM, Biduski B, Prietto L, Castilhos DD, Zavareze ED, Dias ARG (2017) Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties. Food Chem 221:1614–1620. https://doi.org/10.1016/j.foodchem.2016.10.129

    Article  CAS  PubMed  Google Scholar 

  11. Simsek S, Ovando-Martinez M, Whitney K, Bello-Perez LA (2012) Effect of acetylation, oxidation and annealing on physicochemical properties of bean starch. Food Chem 134:1796–1803. https://doi.org/10.1016/j.foodchem.2012.03.078

    Article  CAS  PubMed  Google Scholar 

  12. Mehboob S, Ali TM, Sheikh M, Hasnain A (2020) Effects of cross linking and/or acetylation on sorghum starch and film characteristics. Int J Biol Macromol 155:786–794. https://doi.org/10.1016/j.ijbiomac.2020.03.144

    Article  CAS  PubMed  Google Scholar 

  13. Zhang JF, Sun XZ (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromol 5:1446–1451. https://doi.org/10.1021/bm0400022

    Article  CAS  Google Scholar 

  14. Liu J, Jiang H, Chen L (2012) Grafting of glycidyl methacrylate onto poly(lactide) and properties of PLA/starch blends compatibilized by the grafted copolymer. J Polym Environ 20:810–816. https://doi.org/10.1007/s10924-012-0438-1

    Article  CAS  Google Scholar 

  15. Wang H, Sun XZ, Seib P (2018) Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J Appl Polym Sci 82:1761–1767. https://doi.org/10.1002/app.2018

    Article  Google Scholar 

  16. Phetwarotai W, Potiyaraj P, Aht-Ong D (2013) Biodegradation of polylactide and gelatinized starch blend films under controlled soil burial conditions J Polym Environ 21:95–107. https://doi.org/10.1007/s10924-012-0530-6

    Article  CAS  Google Scholar 

  17. Machado CM, Benelli P, Tessaro IC (2020) Effect of acetylated starch on the development of peanut skin-cassava starch foams. Int J Biol Macromol 165:1706–1716. https://doi.org/10.1016/j.ijbiomac.2020.10.048

    Article  CAS  PubMed  Google Scholar 

  18. Guan J, Hanna MA (2005) Selected morphological and functional properties of extruded acetylated starch-poly(lactic acid) foams. Ind Eng Chem Res 44:3106–3115. https://doi.org/10.1021/ie049786q

    Article  CAS  Google Scholar 

  19. Marinkovic AD, Vuksanovic MM, Karic N, Dokic V, Popovic M, Heinemann RJ, Tomic NZ (2021) The effect of natural modifiers for starch hydrophobization on performance of composite based on ethylene acrylic acid copolymer. Polym Compos 42:1325–1337. https://doi.org/10.1002/pc.25903

    Article  CAS  Google Scholar 

  20. Song CG, Baik MY, Kim BY (2013) Rheological properties of native maize, vaxy maize, and acetylated maize starches, and applications in the development of food products. J Korean Soc Appl Biol Chem 56:63–68. https://doi.org/10.1007/s13765-012-2142-1

    Article  Google Scholar 

  21. Nasseri R, Ngunjiri R, Moresoli C, Yu AP, Yuan ZS, Xu CB (2020) Poly(lactic acid)/acetylated starch blends: effect of starch acetylation on the material properties. Carbohydr Polym 229:115453. https://doi.org/10.1016/j.carbpol.2019.115453

    Article  CAS  PubMed  Google Scholar 

  22. Lawal OS (2004) Succinyl and acetyl starch derivatives of a hybrid maize: physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. Carbohydr Res 339:2673–2682. https://doi.org/10.1016/j.carres.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  23. Hong Y, Liu G, Gu Z (2016) Recent advances of starch-based excipients used in extended-release tablets: a review. Drug Deliv 23:12–20. https://doi.org/10.3109/10717544.2014.913324

    Article  CAS  PubMed  Google Scholar 

  24. Zięba T, Kapelko M, Szumny A (2013) Effect of preparation method on the properties of potato starch acetates with an equal degree of substitution. Carbohydr Polym 94:193–198. https://doi.org/10.1016/j.carbpol.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  25. Han F, Gao C, Liu M, Huang F, Zhang B (2013) Synthesis, optimization and characterization of acetylated corn starch with the high degree of substitution. Int J Biol Macromol 59:372–376. https://doi.org/10.1016/j.ijbiomac.2013.04.080

    Article  CAS  PubMed  Google Scholar 

  26. Elomaa M, Asplund T, Soininen P, Laatikainen R, Peltonen S, Hyvärinen S, Urtti A (2004) Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydr Polym 57:261–267. https://doi.org/10.1016/j.carbpol.2004.05.003

    Article  CAS  Google Scholar 

  27. Ke TY, Sun SXZ, Seib P (2003) Blending of poly(lactic acid) and starches containing varying amylose content. J Appl Polym Sci 89:3639–3646. https://doi.org/10.1002/app.12617

    Article  CAS  Google Scholar 

  28. Ljungberg N, Wesslén B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86:1227–1234. https://doi.org/10.1002/app.11077

    Article  CAS  Google Scholar 

  29. Galvez J, Aguirre JPC, Salazar MAH, Mondragon BV, Wagner E, Caicedo C (2020) Effect of extrusion screw speed and plasticizer proportions on the rheological, thermal, mechanical, morphological and superficial properties of PLA. Polymers 12:2111. https://doi.org/10.3390/polym12092111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou L, Zhao G, Feng Y, Yin J, Jiang W (2015) Toughening polylactide with polyether-block-amide and thermoplastic starch acetate: influence of starch esterification degree. Carbohydr Polym 127:79–85. https://doi.org/10.1016/j.carbpol.2015.03.022

    Article  CAS  PubMed  Google Scholar 

  31. Zhou XM, Cheng R, Wang B, Zeng JS, Xu J, Li JP, Kang L, Cheng Z, Gao WH, Chen KF (2021) Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydr Polym 251:117117. https://doi.org/10.1016/j.carbpol.2020.117117

    Article  CAS  PubMed  Google Scholar 

  32. Yousefnia Pasha H, Mohtasebi SS, Tabatabaeekoloor R, Taherimehr M, Javadi A, Soltani Firouz M (2021) Preparation and characterization of the plasticized polylactic acid films produced by the solvent-casting method for food packaging applications. J Food Proc Preserv 45:16089. https://doi.org/10.1111/jfpp.16089

    Article  CAS  Google Scholar 

  33. Sun YJ, Hu QE, Qian JT, Li T, Ma PM, Shi DJ, Dong WF, Chen MQ (2016) Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer. Carbohydr Polym 139:28–34. https://doi.org/10.1016/j.carbpol.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  34. Takkalkar P, Tobin MJ, Vongsvivut J, Mukherjee T, Nizamuddin S, Griffin G, Kao N (2019) Structural, thermal, rheological and optical properties of poly (lactic acid) films prepared through solvent casting and melt processing techniques. J Taiwan InstChem Eng 104:293–300. https://doi.org/10.1016/j.jtice.2019.08.018

    Article  CAS  Google Scholar 

  35. Razali MAA, Sanusi N, Ismail H, Othman N, Ariffin A (2012) Application of response surface methodology (RSM) for optimization of cassava starch grafted poly(DADMAC) synthesis for cationic properties. Starch 64:935–943. https://doi.org/10.1002/star.201200007

    Article  CAS  Google Scholar 

  36. Ortiz-Fernández A, Ríos-Soberanis CR, Chim-Chi YA, Moo-Huchin VM, Estrada-León RJ, Pérez-Pacheco E (2020) Optimization of biodegradable starch adhesives using response surface methodology. Polym Bull 78:3729–3749. https://doi.org/10.1007/s00289-020-03297-y

    Article  CAS  Google Scholar 

  37. Bergel BF, Osorio SD, da Luz LM, Santana RMC (2018) Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydr Polym 200:106–114. https://doi.org/10.1016/j.carbpol.2018.07.047

    Article  CAS  PubMed  Google Scholar 

  38. Franco E, Dussan R, Navia DP, Amu M (2021) Study of the annealing effect of starch/polyvinyl alcohol films crosslinked with glutaraldehyde. Gels 7:249. https://doi.org/10.3390/gels7040249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zhou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Ma, H., Chen, Y. et al. Optimization of processing parameters in poly(lactic acid)-reinforced acetylated starch composite films by response surface methodology. Iran Polym J 32, 251–261 (2023). https://doi.org/10.1007/s13726-022-01113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01113-0

Keywords

Navigation