Skip to main content
Log in

Polypropylene toughened with ethylene-n-butyl acrylate-carbon monoxide terpolymer: structure–property relationship

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Phase morphology, mechanical properties, melt rheology, and failure mechanisms of polypropylene (PP) blended with 0–30% (by weight) of ethylene-n-butyl acrylate-carbon monoxide (E-nBA-CO) were studied. A typical matrix/dispersed-droplet morphology was observed for all blends together with a relatively coarse dispersion of modifier domains in the blends having more than 20% (by weight) of E-nBA-CO. Binary blends showed tremendous improvements in tensile ductility compared with neat PP. The elastic modulus, yield stress, and tensile strength decreased steadily with E-nBA-CO loading in the blend, but the degree of reductions was insignificant and the blends exhibited a good balance of tensile properties. The impact strength on notched samples increased sharply with E-nBA-CO content up to 10% (by weight) and then decreased at higher modifier contents. E-nBA-CO did not influence the crystallization and melting characteristics of PP matrix. E-nBA-CO changed the rheological behavior of PP, and melt viscosity and elasticity for the blends increased in direct proportion to the E-nBA-CO fraction. A transition from a liquid-like response to a nearly solid-like one at low-frequency regions was detected with the progressive incorporation of E-nBA-CO into the PP matrix. Fractography analysis of impact-fractured samples revealed some localized, small-scale plastic deformations along with a relatively poor interfacial adhesion across the phase boundaries between the dispersed domains and the surrounding PP matrix. Extensive interfacial debonding–cavitation and pull out of dispersed domains were responsible for the low impact toughness for the blends containing more than 15% (by weight) of E-nBA-CO.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Paul DR, Barlow JW, Keskkula H (1988) Encyclopedia of polymer science and engineering. Wiley Interscience, New York

    Google Scholar 

  2. Paul DR, Bucknall CB (1999) Polymer blends: formulation, vol 1. Wiley Interscience, New York

    Google Scholar 

  3. Utracki LA (2003) Polymer blends handbook. Springer Science, New York

    Book  Google Scholar 

  4. Utracki LA, Wilkie CA (2014) Polymer blends handbook. Springer, New York

    Google Scholar 

  5. Utracki LA (1990) Polymer alloys and blends. Hanser Pub. Inc.

  6. Yin B, Zhao Y, Yu RZ, An H, Yang MB (2007) Morphology development of PC/PE blends during compounding in a twin-screw extruder. Polym Eng Sci 47:14–25

    Article  CAS  Google Scholar 

  7. Yin B, Zhao Y, Yang W, Pan MM, Yang MB (2006) Polycarbonate/liquid crystalline polymer blend: crystallization of polycarbonate. Polymer 47:8237–8240

    Article  CAS  Google Scholar 

  8. Virgilio N, Desjardins P, L’Esperance G, Favis BD (2009) In situ measure of interfacial tensions in ternary and quaternary immiscible polymer blends demonstrating partial wetting. Macromolecules 42:7518–7529

    Article  CAS  Google Scholar 

  9. Mai YW, Dasari A, Yu ZZ (2007) Transcrystalline regions in the vicinity of nanofillers in polyamide-6. Macromolecules 40:123–130

    Article  Google Scholar 

  10. Corroller PL, Favis BD (2011) Effect of viscosity in ternary polymer blends displaying partial wetting phenomena. Polymer 52:3827–3834

    Article  Google Scholar 

  11. Ravati S, Favis BD (2010) Morphological states for a ternary polymer blend demonstrating complete wetting. Polymer 51:4547–4561

    Article  CAS  Google Scholar 

  12. Wang D, Li Y, Xie XM, Guo BH (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52:191–200

    Article  CAS  Google Scholar 

  13. Mehrabi-Mazidi M, Razavi-Aghjeh MK (2021) Microscopic deformation behavior and crack resistance mechanism of core-shell structures in highly-toughened PP/PA6/EPDM-g-MA ternary blends. Macromol Mater Eng 306:2100174

    Article  CAS  Google Scholar 

  14. Mehrabi-Mazidi M, RazaviAghjeh MK, Hasanpour M (2018) Fracture resistance and micromechanical deformations in PP/PA6/EPDM ternary blends: effect of rubber functionality, dispersion state and loading conditions. Eng Fract Mech 191:65–81

    Article  Google Scholar 

  15. Mehrabi-Mazidi M, RazaviAghje MK, Khonakdar HA, Reuter U (2016) Structure-property relationships in super-toughened polypropylene-based ternary blends of core-shell morphology. RSC Adv 6:1508–1526

    Article  Google Scholar 

  16. Karger-Kocsis J, Bárány T (2019) Polypropylene handbook: morphology, blends and composites. Springer International Publishing, Berlin

    Book  Google Scholar 

  17. Karger-Kocsis J (1994) Polypropylene: structures, blends and composites, vol 1. Springer, London

    Google Scholar 

  18. Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77:409–417

    Article  CAS  Google Scholar 

  19. Panda Bishnu P, Mohanty S, Nayak SK (2015) Mechanism of toughening in rubber toughened polyolefin: a review. Polym Plast Tech Eng 54:462–473

    Article  Google Scholar 

  20. Karian HG (2003) Handbook of polypropylene and polypropylene composites, 2nd edn. Taylor & Francis Inc, New York

    Book  Google Scholar 

  21. Tolinski M (2015) Additives for polyolefins: getting the most out of polypropylene, polyethylene and TPO. Elsevier, Oxford

    Google Scholar 

  22. Zare L, Arefazar A, MoiniJazani O (2022) Study on phase structure and properties of the toughened blends of polypropylene-polybutylene terephthalate (PP/PBT). Iran Polym J 31:153–167

    Article  CAS  Google Scholar 

  23. http://elvaloy.dupont.com. Accessed May 2022

  24. Chang BP, Mohanty AK, Misra M (2018) Tuning the compatibility to achieve toughened biobased poly(lactic acid)/poly(butylene terephthalate) blends. RSC Adv 8:27709–27724

    Article  CAS  Google Scholar 

  25. Kaci M, Benhamida A, Cimmino S, Silvestre C, Carfagna C (2005) Waste and virgin LDPE/PET blends compatibilized with an ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) terpolymer. Macromol Mater Eng 290:987–995

    Article  CAS  Google Scholar 

  26. Yang W, Wang XL, Li J, Yan X, Ge S, Tadakamalla S, Guo Z (2018) Polyoxymethylene/ethylene butylacrylate copolymer/ethylene-methyl acrylate-glycidyl methacrylate ternary blends. Polym Eng Sci 58:1127–1134

    Article  CAS  Google Scholar 

  27. You X, Snowdon MR, Misra M, Mohanty AK (2018) Biobased poly(ethylene terephthalate)/poly(lactic acid) blends tailored with epoxide compatibilizers. ACS Omega 3:11759–11769

    Article  CAS  Google Scholar 

  28. Andrzejewski J, Skórczewska K, Klozinski A (2020) Improving the toughness and thermal resistance of polyoxymethylene/poly(lactic acid) blends: evaluation of structure-properties correlation for reactive processing. Polymers 12:307

    Article  CAS  Google Scholar 

  29. Jasso-Gastinel CF, Kenny JM (2017) Modification of polymer properties. Elsevier, Oxford

    Google Scholar 

  30. Fang C, Lu X, Qu JP (2019) Preparation and properties of biodegradable poly (lactic acid)/ethylene butyl acrylate glycidyl methacrylate blends via novel vane extruder. Plast Rubber Compos 48(364):373

    Google Scholar 

  31. Yang L, Chen H, Jia S, Lu X, Huang J, Yu X, Ye K, He G, Qu J (2014) Influences of ethylene-butylacrylate-glycidyl methacrylate on morphology and mechanical properties of poly(butylene terephthalate)/polyolefin elastomer blends. J Appl Polym Sci 131:16

    Article  Google Scholar 

  32. Bartczak Z, Galeski A (2014) In: Utracki LA, Wilkie CA (eds) Polymer blends handbook. Springer Science, New York

  33. Choudhary V, Varma HS, Varma IK (1991) Polyolefin blends: effect of EPDM rubber on crystallization, morphology and mechanical properties of polypropylene/EPDM blends. Polymer 32:2534–2540

    Article  CAS  Google Scholar 

  34. Shariatpanahi H, Nazokdast H, Dabir B, Sadaghiani K, Hemmati M (2002) Relationship between interfacial tension and dispersed phase particle size in polymer blends: I. PP/EPDM. J Appl Polym Sci 86:3148–3159

    Article  CAS  Google Scholar 

  35. Jiang W, Liu CH, Wang ZG, An LJ, Liang HJ, Jiang BZ, Wang XH, Zhang HX (1998) Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and temperature. Polymer 39:3285–3288

    Article  CAS  Google Scholar 

  36. Jiang W, Tjonga SC, Li RKY (2000) Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed. Polymer 41:3479–3482

    Article  CAS  Google Scholar 

  37. Basseri G, Mehrabi-Mazidi M, Hosseini F, Razavi-Aghjeh MK (2014) Relationship among microstructure, linear viscoelastic behavior and mechanical properties of SBS triblock copolymer-compatibilized PP/SAN blend. Polym Bull 71:465–486

    Article  CAS  Google Scholar 

  38. Mehrabi-Mazidi M, Razavi-Aghjeh MK (2015) Effects of blend composition and compatibilization on the melt rheology and phase morphology of binary and ternary PP/PA6/EPDM blends. Polym Bull 72:1975–2000

    Article  CAS  Google Scholar 

  39. Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt:interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Article  CAS  Google Scholar 

  40. Mehrabi-Mazidi M, Edalat A, Berahman R, Hosseini FS (2018) Highly-toughened polylactide-(PLA)-based ternary blends with significantly enhanced glass transition and melt strength: tailoring the interfacial interactions, phase morphology, and performance. Macromolecules 51:4298–4314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection and analysis were performed by AE, MM-M and SA. The first draft of the manuscript was written by MM-M and HK. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majid Mehrabi-Mazidi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabi-Mazidi, M., Edalat, A., Arezoumand, S. et al. Polypropylene toughened with ethylene-n-butyl acrylate-carbon monoxide terpolymer: structure–property relationship. Iran Polym J 32, 23–36 (2023). https://doi.org/10.1007/s13726-022-01102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01102-3

Keywords

Navigation