Skip to main content
Log in

Nanocomposite based on poly(lauryl acrylate)-grafted Fe3O4 for polycyclic aromatic hydrocarbon removal from water

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Discharge of oil water from industrial activities can have significant effects on environment with potentially considerable economic consequences. Some current approaches to oil and polycyclic aromatic hydrocarbon (PAH) remediation do not lead to any desired effect and may have detrimental environmental results. However, oil pollution remediation was developed through nanotechnology via oil-absorbing method. In this work, a simple hydrothermal approach for preparing poly(lauryl acrylate)-grafted magnetite Fe3O4 nanoparticles (GMNPs) to separate PAH, i.e., naphthalene from water is presented with a high removal efficiency under relevant conditions. At first, the Fe3O4 NPs were synthesized and then chemical modification was performed through the reaction with (3-aminopropyl) triethoxysilane (APTES) and acryloyl chloride (AC) as sequentially polymerizable groups. Finally, poly(lauryl acrylate) was grafted to the modified Fe3O4 via free radical polymerization technique to form hydrophobic surfaces for absorbing naphthalene selectively. The results disclosed that as-prepared adsorbent exhibited high specific surface area (105.36 m2/g). The removal efficiency was optimized for the most important variables, e.g., pH and contact time and the highest removal efficiency (%) was obtained 97.4%. Furthermore, kinetic and equilibrium function of the absorbent in the absorption process was investigated in detail and correlated with pseudo-second-order and Freundlich model, respectively, and maximum adsorption capacity was about 32.87 mg/g. Moreover, this adsorbent can be eliminated from solution through applying an external magnet and then recycled and re-used in five consecutive cycles, successfully.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Torabian A, Panahi HA, Nabi Bid Hendi GR, Mehrdadi N (2014) Synthesis, modification and graft polymerization of magnetic nano particles for PAH removal in contaminated water. J Environ Health Sci Eng 12:105. https://doi.org/10.1186/2052-336X-12-105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Torabian A, Kazemian H, Seifi L, Nabi Bidhendi G, Azimi AA, Ghadiri SK (2010) Removal of petroleum aromatic hydrocarbons by surfactant-modified natural zeolite: the effect of surfactant. Clean: Soil, Air, Water 38:77–83. https://doi.org/10.1002/clen.200900157

    Article  CAS  Google Scholar 

  3. Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR (2005) Oil spill cleanup from sea water by sorbent materials. Chem Eng Technol 28:1525–1528. https://doi.org/10.1002/ceat.200407083

    Article  CAS  Google Scholar 

  4. Ivshina IB, Kuyukina MS, Krivoruchko AV, Elkin AA, Makarov SO, Cunningham CJ, Peshkur TA, Atlas RM, Philp JC (2015) Oil spill problems and sustainable response strategies through new technologies. Environ Sci: Processes Impacts 17:1201–1219. https://doi.org/10.1039/C5EM00070J

    Article  CAS  Google Scholar 

  5. Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: in dissoluble ties with microorganisms. Trends Biotechnol 35:860–870. https://doi.org/10.1016/j.tibtech.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  7. Song Y, Fang G, Zhu C, Zhu F, Wu S, Chen N, Wu T, Wang Y, Gao J, Zhou D (2019) Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: an in situ pilot-scale study. Chem Eng J 355:65–75. https://doi.org/10.1016/j.cej.2018.08.126

    Article  CAS  Google Scholar 

  8. Duan L, Naidu R, Thavamani P, Meaklim J, Megharaj M (2015) Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach. Environ Sci Pollut Res 22:8927–8941. https://doi.org/10.1007/s11356-013-2270-0

    Article  CAS  Google Scholar 

  9. Li Y, Liao X, Huling SG, Xue T, Liu Q, Cao H, Lin Q (2019) The combined effects of surfactant solubilization and chemical oxidation on the removal of polycyclic aromatic hydrocarbon from soil. Sci Total Environ 647:1106–1112. https://doi.org/10.1016/j.scitotenv.2018.07.420

    Article  CAS  PubMed  Google Scholar 

  10. Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeterior Biodegrad 70:141–147. https://doi.org/10.1016/j.ibiod.2012.03.002

    Article  CAS  Google Scholar 

  11. Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968. https://doi.org/10.1016/j.chemosphere.2016.10.115

    Article  CAS  PubMed  Google Scholar 

  12. Cho E, Tahir MN, Choi JM, Kim H, Yu J-H, Jung S (2015) Novel magnetic nanoparticles coated by benzene-and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon. Carbohydr Polym 133:221–228. https://doi.org/10.1016/j.carbpol.2015.06.089

    Article  CAS  PubMed  Google Scholar 

  13. Boon YH, Zain NNM, Mohamad S, Osman H, Raoov M (2019) Magnetic poly (β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chem 278:322–332. https://doi.org/10.1016/j.foodchem.2018.10.145

    Article  CAS  PubMed  Google Scholar 

  14. Demortiere A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Begin-Colin S (2011) Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 3:225–232. https://doi.org/10.1039/C0NR00521E

    Article  CAS  PubMed  Google Scholar 

  15. Chi Z, Zhu Y, Liu W, Huang H, Li H (2021) Selective removal of As(III) using magnetic graphene oxide ion-imprinted polymer in porous media: potential effect of external magnetic field. J Environ Chem Eng 9:105671. https://doi.org/10.1016/j.jece.2021.105671

    Article  CAS  Google Scholar 

  16. Huang C, Hu B (2008) Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim Acta Part B At Spectrosc 63:437–444. https://doi.org/10.1016/j.sab.2007.12.010

    Article  CAS  Google Scholar 

  17. Yan J, Li K (2021) A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep Purif Technol 277:119469. https://doi.org/10.1016/j.seppur.2021.119469

    Article  CAS  Google Scholar 

  18. Yang N, Zhu S, Zhang D, Xu S (2008) Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett 62:645–647. https://doi.org/10.1016/j.matlet.2007.06.049

    Article  CAS  Google Scholar 

  19. Kumari M, Gupta SK (2020) A novel process of adsorption cum enhanced coagulation flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of NOM along with turbidity from drinking water. J Clean Prod 244:118899. https://doi.org/10.1016/j.jclepro.2019.118899

    Article  CAS  Google Scholar 

  20. Kumari M, Gupta SK (2018) Removal of aromatic and hydrophobic fractions of natural organic matter (NOM) by surfactant modified magnetic nanoadsorbents (MNPs). Environ Sci Pollut Res 25:25565–25579. https://doi.org/10.1007/s11356-018-2611-0

    Article  CAS  Google Scholar 

  21. Daifullah AAM, Girgis BS (2003) Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf A Physicochem Eng Asp 214:181–193. https://doi.org/10.1016/S0927-7757(02)00392-8

    Article  CAS  Google Scholar 

  22. Goswami R, Deb P, Thakur R, Sarma KP, Basumallick A (2011) Removal of As (III) from aqueous solution using functionalized ultrafine iron oxide nanoparticles. Sep Sci Technol 46:1017–1022. https://doi.org/10.1080/01496395.2010.537728

    Article  CAS  Google Scholar 

  23. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244. https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  24. Shariati S, Faraji M, Yamini Y, Rajabi AA (2011) Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 270:160–165. https://doi.org/10.1016/j.desal.2010.11.040

    Article  CAS  Google Scholar 

  25. Wei Z, Ma X, Zhang Y, Guo Y, Wang W, Jiang Z-Y (2022) High-efficiency adsorption of phenanthrene by Fe3O4-SiO2-dimethoxydiphenylsilane nanocomposite: experimental and theoretical study. J Hazard Mater 422:126948. https://doi.org/10.1016/j.jhazmat.2021.126948

    Article  CAS  PubMed  Google Scholar 

  26. Khodakarami M, Bagheri M (2021) Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment. J Clean Prod 296:126404. https://doi.org/10.1016/j.jclepro.2021.126404

    Article  CAS  Google Scholar 

  27. Chu Y, Pan Q (2012) Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials. ACS Appl Mater Interfaces 4:2420–2425. https://doi.org/10.1021/am3000825

    Article  CAS  PubMed  Google Scholar 

  28. Damavandi F, Soares JBP (2022) Polystyrene magnetic nanocomposite blend: an effective, facile, and economical alternative in oil spill removal applications. Chemosphere 286:131611. https://doi.org/10.1016/j.chemosphere.2021.131611

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Fu X, Xia W, Zhang R, Fu K, Wu G, Jia B, Li S, Li J (2021) Removal of emulsified oil from water by using recyclable chitosan based covalently bonded composite magnetic flocculant: performance and mechanism. J Hazard Mater 419:126529. https://doi.org/10.1016/j.jhazmat.2021.126529

    Article  CAS  PubMed  Google Scholar 

  30. Thanikaivelan P, Narayanan NT, Pradhan BK, Ajayan PM (2012) Collagen based magnetic nanocomposites for oil removal applications. Sci Rep 2:230. https://doi.org/10.1038/srep00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6:5413–5419. https://doi.org/10.1021/nn3012948

    Article  CAS  PubMed  Google Scholar 

  32. Silva VAJ, Andrade PL, Silva MPC, Bustamante DA, Valladares LDLS, Aguiar JA (2013) Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn Magn Mater 343:138–143. https://doi.org/10.1016/j.jmmm.2013.04.062

    Article  CAS  Google Scholar 

  33. Yu BY, Kwak SY (2010) Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure. J Mater Chem 20:8320–8328. https://doi.org/10.1039/C0JM01274B

    Article  CAS  Google Scholar 

  34. Valderrama C, Gamisans X, Cortina JL, Farran A, de las Heras FX (2009) Evaluation of polyaromatic hydrocarbon removal from aqueous solutions using activated carbon and hyper-crosslinked polymer (Macronet MN200). J Chem Technol Biotechnol 84:236–245. https://doi.org/10.1002/jctb.2030

    Article  CAS  Google Scholar 

  35. Rinawati HD, Supriyanto R, Permana DF, Yunita, (2019) Adsorption of polycyclic aromatic hydrocarbons using low-cost activated carbon derived from rice husk. J Phys Conf Ser 1338:012005. https://doi.org/10.1088/1742-6596/1338/1/012005

    Article  CAS  Google Scholar 

  36. Celebioglu A, Topuz F, Yildiz ZI, Uyar T (2019) Efficient removal of polycyclic aromatic hydrocarbons and heavy metals from water by electrospun nanofibrous polycyclodextrin membranes. ACS Omega 4:7850–7860. https://doi.org/10.1021/acsomega.9b00279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wan D, Chen F, Geng Q, Lu H, Willcock H, Liu Q, Wang F, Zou K, Jin M, Pu H, Du J (2014) A multifunctional azobenzene-based polymeric adsorbent for effective water remediation. Sci Rep 4:7296. https://doi.org/10.1038/srep07296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim D-Y, Han G-T, Shin H-S (2021) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by cellulosic aerogels during smoked pork sausage manufacture. Food Control 124:107878. https://doi.org/10.1016/j.foodcont.2021.107878

    Article  CAS  Google Scholar 

  39. Hall S, Tang R, Baeyens J, Raf D (2009) Removing polycyclic aromatic hydrocarbons from water by adsorption on silicagel. Polycycl Aromat Comp 29:160–183. https://doi.org/10.1080/10406630903017534

    Article  CAS  Google Scholar 

  40. Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, Keukeleire DD, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresource Technol 99:4515–4519. https://doi.org/10.1016/j.biortech.2007.08.041

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Ghasemi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Abareshi, H. Nanocomposite based on poly(lauryl acrylate)-grafted Fe3O4 for polycyclic aromatic hydrocarbon removal from water. Iran Polym J 31, 1003–1019 (2022). https://doi.org/10.1007/s13726-022-01056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01056-6

Keywords

Navigation