Skip to main content
Log in

Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylene–vinyl acetate copolymers

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Ethylene–vinyl acetate (EVA) copolymers with different vinyl acetate (VAc) contents can be used in a wide range of daily application areas. However, the relationship between VAc contents and the thermal behavior and optical properties of EVA are rarely reported. This work aims to investigate the effect of varied VAc contents on thermal behavior and optical properties of EVA copolymers, and further analyze the suitable application areas of different EVA copolymers. Crystallization behaviors present that three-dimensional spherulitic crystallites or two-dimensional crystallites of lamella type were formed presumably during the crystal growth from the primary crystallization process. Meanwhile, the lamellar thickness of EVA copolymers decreased from 3.05 nm to 1.34 nm with VAc content increases from 0 to 33% (by wt). Thermal behavior indicated that the thermal stability of EVA copolymers was weakened with the increase in VAc content. EVA copolymers involved two decomposition steps as deacetylation process of the VAc group and polyethylene chain scission. Nevertheless, the transmittance of EVA copolymers increased to 92% with rising the VAc content to 33% (by wt). The dynamic mechanical thermal analysis (DMTA) technique was adopted to study the glass transition temperature and viscoelastic behaviors of EVA copolymers. The thermal behavior, optical, and mechanical properties would ultimately influence the application areas. Thus, combining the thermal behavior, optical, and mechanical properties can provide a better perspective on the application areas of EVA copolymers with different VAc contents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Garcia-Munoz MA, Valera-Zaragoza M, Aparicio-Saguilan A, Pena-Rico MA, Juarez-Arellano EA, Aguirre-Cruz A, Ramirez-Vargas E, Sanchez-Valdes S (2020) Melt processing of ethylene-vinyl acetate/banana starch/Cloisite 20A organoclay nanocomposite films: structural, thermal and composting behavior. Iran Polym J 29:723–733

    Article  CAS  Google Scholar 

  2. Qi XM, Dong YB, Islam MZ, Zhu YF, Fu YQ, Fu SY (2021) Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber. Compos Sci Technol 203:108609

    Article  CAS  Google Scholar 

  3. Indrajati IN, Setyorini I (2020) Mechanical properties, set and rebound resilience characteristics of natural rubber/ethylene vinyl acetate blend on various ratios. Macromol Symp 391:1900136

    Article  CAS  Google Scholar 

  4. Chinnadurai T, Nalajam P, Vendan SA (2018) Analysis of mechanical and thermal behaviors for cross linked ethylene vinyl acetate (EVA) protective film employed for PV cells. Mater Today Proc 5:23369–23374

    Article  CAS  Google Scholar 

  5. Guo HC, Yue L, Rui GC, Manas-Zloczower I (2020) Recycling poly(ethylene-vinyl acetate) with improved properties through dynamic cross-linking. Macromolecules 53:458–464

    Article  CAS  Google Scholar 

  6. Zubkiewicz A, Szymczyk A, Paszkiewicz S, Jedrzejewski R, Piesowicz EOD, Sieminski J (2020) Ethylene vinyl acetate copolymer/halloysite nanotubes nanocomposites with enhanced mechanical and thermal properties. J Appl Polym Sci 137:e49135

    Article  Google Scholar 

  7. Arsac A, Carrot C, Guillet J (1999) Rheological characterization of ethylene vinyl acetate copolymers. J Appl Polym Sci 74:2625–2630

    Article  CAS  Google Scholar 

  8. Zarrouki A, Espinosa E, Boisson C, Monteil V (2017) Free radical copolymerization of ethylene with vinyl acetate under mild conditions. Macromolecules 50:3516–3523

    Article  CAS  Google Scholar 

  9. Yamaki SB, Prado EA, Atvars TDZ (2002) Phase transitions and relaxation processes in ethylene-vinyl acetate copolymers probed by fluorescence spectroscopy. Eur Polym J 38:1811–1826

    Article  CAS  Google Scholar 

  10. Sung YT, Kum CK, Lee HS, Kim JS, Yoon HG, Kim WN (2005) Effects of crystallinity and crosslinking on the thermal and rheological properties of ethylene vinyl acetate copolymer. Polymer 46:11844–11848

    Article  CAS  Google Scholar 

  11. Henderson MA (1993) Ethylene-vinyl acetate (EVA) copolymers: a general review. IEEE Electr Insul M 9:30–38

    Article  Google Scholar 

  12. Hamid ARA, Osman AF, Mustafa Z, Mandal S, Ananthakrishnan R (2020) Tensile, fatigue and thermomechanical properties of poly(ethylene-co-vinyl acetate) nanocomposites incorporating low and high loadings of pre-swelled organically modified montmorillonite. Polym Test 85:106426

    Article  Google Scholar 

  13. Diez E, Rodriguez A, Gomez JM, Galan J (2021) TG and DSC as tools to analyse the thermal behaviour of EVA copolymers. J Elastom Plast 53:792–805

    Article  CAS  Google Scholar 

  14. Chitra SD, Lodhi K, Kant C, Saini P, Kumar S (2020) Structural composition and thermal stability of extracted EVA from silicon solar modules waste. Sol Energy 211:74–81

    Article  CAS  Google Scholar 

  15. Wang TX, Song LP, Geng YH, Shen X (2021) Temperature memory effect from below glass transition to up to melting range in an ethylene-vinyl acetate copolymer. J Appl Polym Sci 138:e50571

    Article  Google Scholar 

  16. Shi XM, Zhang J, Jin J, Chen SJ (2008) Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents. Express Polym Lett 2:623–629

    Article  CAS  Google Scholar 

  17. Ghadikolaei SS, Omrani A, Ehsani M (2016) Impact of bacterial cellulose nanofibers on the nonisothermal crystallization kinetics of ethylene-vinyl acetate copolymer. Ind Eng Chem Res 55:8248–8257

    Article  Google Scholar 

  18. Park S, Yim C, Lee BH, Choe S (2005) Properties of the blends of ethylene-vinyl acetate and ethylene-alpha-olefins copolymers. Macromol Res 13:243–252

    Article  CAS  Google Scholar 

  19. Martinez-Garcia A, Sanchez-Reche A, Gisbert-Soler S, Cepeda-Jimenez CM, Torregrosa-Macia R, Martin-Martinez JM (2007) Corona discharge treatment of EVAs with different vinyl acetate contents. J Adhes Sci Technol 21:441–463

    Article  CAS  Google Scholar 

  20. Sharma BK, Desai U, Singh A, Singh A (2020) Effect of vinyl acetate content on the photovoltaic-encapsulation performance of ethylene vinyl acetate under accelerated ultra-violet aging. J Appl Polym Sci 137:48268

    Article  CAS  Google Scholar 

  21. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575

    Article  CAS  Google Scholar 

  22. Desai U, Sharma BK, Singh A, Singh A (2020) Enhancement of resistance against damp heat aging through compositional change in PV encapsulant poly (ethylene-co-vinyl acetate). Sol Energy 211:674–682

    Article  CAS  Google Scholar 

  23. Wunderlich B, Czornyj G (1977) A study of equilibrium melting of polyethylene. Macromolecules 10:906–913

    Article  CAS  Google Scholar 

  24. Yin XP, Zhang YH, Zhang J (2017) Transparent plasticised PVC film with ultraviolet and high-energy visible light shielding performance. Plast Rubber Compos 46:375–380

    Article  CAS  Google Scholar 

  25. Qi YL, Zhu SS, Zhang J (2018) The incorporation of modified Sb2O3 and DBDPE: a new member of high solar-reflective particles and their simultaneous application in next-generation multifunctional cool material with improved flame retardancy and lower wetting behaviour. Energy Build 172:47–56

    Article  Google Scholar 

  26. Wang SC, Zhang J, Liu L, Yang F, Zhang YH (2015) Evaluation of cooling property of high density polyethylene (HDPE)/titanium dioxide (TiO2) composites after accelerated ultraviolet (UV) irradiation. Sol Energy Mater Sol C 143:120–127

    Article  CAS  Google Scholar 

  27. Wei JL, Yin B, Yang MB, Feng JM (2012) The effects of vinyl acetate and polyoxyethylene on the properties of halogen-free flame retardant EVA composites. J Macromol Sci B 51:1822–1837

    Article  CAS  Google Scholar 

  28. Costache MC, Jiang DD, Wilkie CA (2005) Thermal degradation of ethylene-vinyl acetate coplymer nanocomposites. Polymer 46:6947–6958

    Article  CAS  Google Scholar 

  29. Rimez B, Rahier H, Assche GV (2008) The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate). Part II: Modelling the degradation kinetics. Polym Degrad Stabil 93:1222–1230

    Article  CAS  Google Scholar 

  30. Jena DP, Mohanty B, Parida RK, Parida BN, Nayak NC (2020) Dielectric and thermal behavior of 0.75 BiFeO3–0.25BaTiO3 filled ethylene vinyl acetate composites. Mater Chem Phys 243:122527

  31. Asim M, Paridah MT, Chandrasekar M, Shahroze RM, Jawaid M, Nasir M, Siakeng R (2020) Thermal stability of natural fibers and their polymer composites. Iran Polym J 29:625–648

    Article  CAS  Google Scholar 

  32. Zhang Z, Lucia LA (2021) Chitin-clay composite gels with enhanced thermal stability prepared in a green and facile approach[J]. J Mater Sci 56:1–12

    Google Scholar 

  33. Gan DKW, Loy ACM, Chin BLF, Yusup S, Unrean P, Rianawati E, Acda MN (2018) Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts. Bioresource Technol 265:180–190

    Article  CAS  Google Scholar 

  34. Wang K, Deng QB (2019) The thermal and mechanical properties of poly(ethylene-co-vinyl acetate) random copolymers (PEVA) and its covalently crosslinked analogues (cPEVA). Polymers 11:1055

    Article  PubMed Central  Google Scholar 

  35. Jozaghkar M, Jahani Y, Arabi H, Ziaee F (2018) Preparation and assessment of phase morphology, rheological properties, and thermal behavior of low-density polyethylene/polyhexene-1 blends[J]. Polym-Plast Technol 57:757–765

    Article  CAS  Google Scholar 

  36. Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung YW, Chum S (1999) Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-octene copolymers. Macromolecules 32:6221–6235

    Article  CAS  Google Scholar 

  37. Badiee A, Ashcroft IA, Wildman RD (2016) The thermo-mechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant. Int J Adhes Adhes 68:212–218

    Article  CAS  Google Scholar 

  38. Gaska K, Xu XD, Gubanski S, Kadar R (2017) Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process. Polymers 9:11

    Article  PubMed Central  Google Scholar 

  39. Mahalakshmi S, Kannammal L, Tung KL, Anbarasan R, Parthasarathy V, Alagesan T (2019) Evaluation of kinetic parameters for the crystallization and degradation process of synthesized strontium mercaptosuccinate functionalized poly(epsilon-caprolactone) by non-isothermal approach. Iran Polym J 28:549–562

    Article  CAS  Google Scholar 

  40. Xu XR, Xu JT, Chen LS, Liu RW, Feng LX (2001) Nonisothermal crystallization kinetics of ethylene-butene copolymer/low-density polyethylene blends. J Appl Polym Sci 80:123–129

    Article  CAS  Google Scholar 

  41. Deetuam C, Samthong C, Choksriwichit S, Somwangthanaroj A (2020) Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iran Polym J 29:103–116

    Article  CAS  Google Scholar 

  42. Zhang R, He XR, Chen Q, Meng LY (2015) Non-isothermal crystallization behaviors of ethylene vinyl acetate copolymer and ethylene vinyl acetate copolymer-graft-maleic anhydride. J Macromol Sci B 54:1515–1531

    Article  CAS  Google Scholar 

  43. Agroui K, Collins G, Farenc J (2012) Measurement of glass transition temperature of crosslinked EVA encapsulant by thermal analysis for photovoltaic application. Renew Energ 43:218–223

    Article  CAS  Google Scholar 

  44. George JJ, Bhowmick AK (2009) Influence of matrix polarity on the properties of ethylene vinyl acetate-carbon nanofiller nanocomposites. Nanoscale Res Lett 4:655–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agroui K, Collins G, Giovanni F, Stark W (2015) A comprehensive indoor and outdoor aging of the cross-linked EVA encapsulant material for photovoltaic conversion. Polym-Plast Technol 54:719–729

    Article  CAS  Google Scholar 

  46. Reding FP, Faucher JA, Whitman RD (2010) Glass transitions in ethylene copolymers and vinyl homopolymers and copolymers. J Polym Sci 57:483–498

    Article  Google Scholar 

  47. Huck ND, Clegg PL (1961) The effect of extrusion variables on the fundamental properties of tubular polythene film. Polym Eng Sci 1:121–132

    Article  Google Scholar 

  48. Jin J, Chen SJ, Zhang J (2010) UV aging behaviour of ethylene-vinyl acetate copolymers (EVA) with different vinyl acetate contents. Polym Degrad Stabil 95:725–732

    Article  CAS  Google Scholar 

  49. Marín ML, Jiménez A, López J (1996) Thermal degradation of ethylene (vinyl acetate). J Therm Anal Calorim 47:247–258

    Article  Google Scholar 

  50. Joohari IB, Giustozzi F (2020) Effect of different vinyl-acetate contents in hybrid SBS-EVA modified bitumen. Constr Build Mater 262:120574

    Article  Google Scholar 

  51. Chowdhury SR, Sharma BK, Mahanwar P, Sarma KS (2016) Vinyl acetate content and electron beam irradiation directed alteration of structure, morphology, and associated properties of EVA/EPDM blends. J Appl Polym Sci 133:43468

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1063 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, P., Zhang, J. Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylene–vinyl acetate copolymers. Iran Polym J 31, 905–917 (2022). https://doi.org/10.1007/s13726-022-01048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01048-6

Keywords

Navigation