Skip to main content
Log in

Non-isothermal crystallization kinetics of poly(phthalazinone ether sulfone)/MC nylon 6 in-situ composites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Non-isothermal crystallization behaviors and non-isothermal crystallization kinetics of poly(phthalazinone ether sulfone) (PPES)/MC nylon 6 in-situ composites prepared by anionic ring-opening polymerization were explored by differential scanning calorimetry (DSC) at various cooling rates. The Fourier transform infrared spectroscopy (FTIR) results confirmed that PPES/MC nylon 6 in-situ composites were successfully synthesized. The scanning electron microscopy (SEM) results demonstrated that PPES particles were well dispersed, at micron levels, in the MC nylon 6 matrix. The DSC results showed that inclusion of PPES to MC nylon 6 increased the crystallinity, while the crystallization rate was reduced. Crystallization kinetic analysis by Jeziorny model exhibited two levels of primary and secondary crystallization mechanisms for all samples, and the lower values of Zc for the in-situ composites as compared to those of MC nylon 6 indicated that MC nylon 6 crystallization process becomes slower in the presence of PPES. The F(T) values of the composites were generally higher as compared to those of pure MC nylon 6, indicating that the interaction between PPES and MC nylon 6 matrix was stronger and the movement of the polymer molecular chain was difficult. Moreover, activation energies of crystallization of the in-situ composites were lower than that of MC nylon 6. Analysis of data founded on theoretical models revealed that PPES acts as a nucleating agent in the nucleation stage and restricts the movement of chain segments for MC nylon 6 during crystal growth.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang DZ, Shi H, Zhang XT, Kan Z (2021) In-situ preparation and performance of MC nylon 6/cellulose nanocrystalline composites (in Chinese). Eng Plast Appl 49:1–7

    Google Scholar 

  2. Wang WQ, Ying J, Wang JK, Wang Q (2019) The influence of montmorillonite on the processing and properties of anionic polyamide 6/montmorillonite composites via vacuum assisted resin infusion. Polym Compos 40:1481–1491

    Article  CAS  Google Scholar 

  3. Ding WJ, Wang YM, Ying J, Li Y, Liu HL, Yuan X, Yu H, Wang JK (2020) Simultaneous enhancements of mechanical and thermal properties of monomer cast nylon via polydimethylsiloxane-modified kaolin. Polym Compos 41:494–504

    Article  CAS  Google Scholar 

  4. Yang F, Gao YB, Mutua FN, Dong YS, He Y (2018) Preparation and properties of carbon fiber reinforced MC nylon 6 composites by in-situ polymerization (in Chinese). Dev Appl Mater 33:90–95

    CAS  Google Scholar 

  5. Taki K, Suenaga H, Ito H (2018) Effect of thermal annealing on crystallinity and mechanical strength of textile glass and carbon fiber reinforced in situ polymerized epsilon-caprolactam parts. Microsyst Technol 24:663–668

    Article  CAS  Google Scholar 

  6. Jian XG, Liao GX, Wang JY (2002) Research progress of poly(arylene ether ketone)s and poly(arylen ether sulfone)s containing phthalazinone moieties (in Chinese). China Plast 16:11–14

    CAS  Google Scholar 

  7. Liu WB, Wang RG, Zhang HT, Jia J, Jiao WC, Xie HQ (2004) High temperature mechanical properties of CF/PPEK and CF/PPES composites. Mater Sci Technol 12:183–189

    Google Scholar 

  8. Zhang MQ (2006) Research on mechanical properties at high and low temperature of high performance thermoplastic composites (in Chinese). Harbin Institute of Technology

    Google Scholar 

  9. Zhang PF (2014) In-situ preparation of PPES/MCPA6 and its modification to the PPES, PPES/PA6 systems (in Chinese). Huaqiao University

    Google Scholar 

  10. Yao HM, Lin ZY, Li BX, Tong CQ (2008) Effect of interaction between PPES and MC nylon 6 on MC nylon 6 crystallization and melting behavior of PPES/MC nylon6 blends (in Chinese). Chem Eng 12:40–43

    Google Scholar 

  11. Papageorgiou DG, Papageorgiou GZ, Bikiaris DN, Chrissafis K (2013) Crystallization and melting of propylene-ethylene random copolymers:homogeneous nucleation and nucleating agents. Eur Polym J 49:1577–1590

    Article  CAS  Google Scholar 

  12. Mu D, Yuan WZ, Sheng M, Chen YB (2012) Crystallization behavior and mechanical properties of nylon 66/GF composite (in Chinese). Plastics 41:57–59

    CAS  Google Scholar 

  13. Liu XH, Fan JQ, Qi ZN (2001) Study on non-isothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites (in Chinese). Polym Mater Sci Eng 17:103–105

    CAS  Google Scholar 

  14. Alvaredo A, Martín M, Castell P, Roberto G, Fernández-Blázquez J (2019) Non-isothermal crystallization behavior of PEEK/graphene nanoplatelets composites from melt and glass states. Polymers 11:124

    Article  PubMed Central  Google Scholar 

  15. Wunderlich B (1980) Macromolecular physics, vol. 3, crystal melting. Academic, New York

    Google Scholar 

  16. Chen Z, Yao C, Yang G (2012) Nonisothermal crystallization behavior, and morphology of poly (trimethylene terephthalate)/polyethylene glycol copolymers. Polym Test 31:393–403

    Article  CAS  Google Scholar 

  17. Avrami M (1940) Kinetics of phase change: II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  18. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    Article  CAS  Google Scholar 

  19. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19:1142–1144

    Article  CAS  Google Scholar 

  20. Liu JP, Mo ZS (1991) Crystallization kinetics of polymer (in Chinese). Polym Bull 4:199–207

    Google Scholar 

  21. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(ary1 ether ether ketone ketone). Polym Eng Sci 37:568–575

    Article  CAS  Google Scholar 

  22. Weng WG, Chen GH, Wu DJ (2003) Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer 44:8119–8132

    Article  CAS  Google Scholar 

  23. Cai LF, Qian H, Lin ZY, Lan XR (2004) Non-isothermal crystallization kinetics of silica/MC nylon 6 in-situ nano-scale composites (in Chinese). China Plast Ind 32:41–43

    CAS  Google Scholar 

  24. Ribeiro B, Hein L, Costa ML, Pötschke P, Burkhart T, Botelho EC (2017) Nonisothermal crystallization kinetic study and thermal stability of multiwalled carbon nanotube reinforced poly (phenylene sulfide) composites. Polym Compos 38:604–615

    Article  CAS  Google Scholar 

  25. Jafari S, Khajavi R, Goodarzi V, Kalaee MR, Khonakdar HA (2019) Nonisothermal crystallization kinetic studies on melt processed poly(ethylene terephthalate)/polylactic acid blends containing graphene oxide and exfoliated graphite nanoplatelets. J Appl Polym Sci 136:47569

    Article  Google Scholar 

  26. Jebril S, Doudou BB, Zghal S, Dridi C (2019) Non-isothermal crystallization kinetics of hybrid carbon nanotube-silica/polyvinyl alcohol Nanocomposites. J Polym Res 26:1–11

    Article  Google Scholar 

  27. Lv C, Liu DG, Tian HF, Xiang AM (2020) Non-isothermal crystallization kinetics of polyvinyl alcohol plasticized with glycerol and pentaerythritol. J Polym Res 27:1–7

    Article  Google Scholar 

  28. Yu F, Xiao L (2021) Non-isothermal crystallization kinetics of poly(ether sulfone) functionalized graphene reinforced poly(ether ether ketone) composites. Polym Test 97:107150

    Article  CAS  Google Scholar 

  29. Chen D, Lei L, Zou M, Li X (2021) Non-isothermal crystallization kinetics of poly (ethylene glycol)-poly (l-lactide) diblock copolymer and poly (ethylene glycol) homopolymer via fast-scan chip-calorimeter. Polymers 13:1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo J, Liu M, Wang H, Yu Y (2021) Non-isothermal crystallization kinetics of polypropylene/bamboo fiber/nano-TiO2 composites. Polym Compos 42:2531–2543

    Article  CAS  Google Scholar 

  31. Alghamdi AA, Alattas H, Saeed WS, Al-Odayni AB, Ahmed AYBH, Al-Owais AA, Aouak T (2021) Thermal properties, isothermal decomposition by direct analysis in real-time-of-flight mass spectrometry and non-isothermal crystallization kinetics of poly (ethylene-co-vinyl alcohol)/poly (ε-caprolactone) blend. Curr Comput-Aided Drug Des 11:292

    CAS  Google Scholar 

  32. Qiao Y, Jalali A, Yang J, Chen Y, Wang S, Jiang Y, Park CB (2021) Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites. J Mater Sci 56:3562–3575

    Article  CAS  Google Scholar 

  33. Borhan A, Taib RM (2020) Non-isothermal crystallization kinetics of poly (lactic acid)/kenaf fiber composites. Sains Malays 49:2169–2185

    Article  CAS  Google Scholar 

  34. Mo ZS (2008) A method for the non-isothermal crystallization kinetics of polymers (in Chinese). Acta Polym Sin 7:656–667

    Article  Google Scholar 

  35. Aziz AMS, Naguib HF, Saad GR (2014) Non-isothermal crystallization kinetics of bacterial poly (3-hydroxybutyrate) in poly (3-hydroxybutyrate-co-butylene adipate) urethanes. Thermochim Acta 591:130–139

    Article  Google Scholar 

  36. Eder M, Wlochowicz A (1983) Kinetics of non-isothermal crystallization of polyethylene and polypropylene. Polymer 24:1593–1595

    Article  CAS  Google Scholar 

  37. Bhattarai N, Kim HY, Dong IC, Lee DR, Dong IY (2003) Nonisothermal crystallization and melting behavior of the copolymer derived from p-dioxanone and poly (ethylene glycol). Eur Polym J 39:1365–1375

    Article  CAS  Google Scholar 

  38. Chen S, Jin J, Zhang J (2011) Non-isothermal crystallization behaviors of poly (4-methyl-pentene-1). J Therm Anal Calorim 103:229–236

    Article  CAS  Google Scholar 

  39. Yang JL, Zhao T, Cui JJ, Liu LJ, Zhou YC, Li G, Zhou EL, Chen XS (2010) Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly (L-lactide)-poly (ethylene glycol) diblock copolymers: effect of the poly (L-lactide) block length. J Polym Sci Part B 44:3215–3226

    Article  Google Scholar 

  40. Wang ZQ, Hu GS, Zhang JT, Xu JS, Shao ZJ (2017) Study on non-isothermal crystallization kinetics of high-temperature resistant polyamides prepared by melt polymerization (in Chinese). Mater Rep 31:161–170

    Google Scholar 

  41. Avrami M (1939) Kinetics of phase change: I—general theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  42. Avrami M (1941) Kinetics of phase change: III—granulation, phase change and microstructure. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  43. Cheng S, Shanks RA (1993) The crystallization kinetics of filled poly (ethylene terephthalate). J Appl Polym Sci 47:2149–2160

    Article  CAS  Google Scholar 

  44. Ebengou RH (1997) Adsorption as a mechanism for nucleating activity: A thermodynamic explanation. J Polym Sci Part B 35:1333–1338

    Article  CAS  Google Scholar 

  45. Qiu Z, Yang W (2010) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37:568–575

    Google Scholar 

  46. Supaphol P, Dangseeyun N, Srimoaon P, Nithitanakul M (2003) Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters. Thermochim Acta 406:207–220

    Article  CAS  Google Scholar 

  47. Augis JA, Bennett JE (1978) Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. Thermal Anal 13:283–292

    Article  CAS  Google Scholar 

  48. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    Article  CAS  Google Scholar 

  49. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry:application to a phenolic plastic. J Polym Sci Part C 6:183–195

    Article  Google Scholar 

  50. Takhor RL (1971) Advances in nucleation and crystallization of glasses. American Ceramics Society, Columbus, pp 166–172

    Google Scholar 

  51. Selvi J, Parthasarathy V, Mahalakshmi S, Anbarasan R, Daramola MO, Kumar PS (2020) Optical, electrical, mechanical, and thermal properties and non-isothermal decomposition behavior of poly(vinyl alcohol)-ZnO nanocomposites. Iran Polym J 29:411–422

    Article  CAS  Google Scholar 

  52. Mahalakshmi S, Kannammal L, Tung KL, AnbarasanR PV, Alagesan T (2019) Evaluation of kinetic parameters for the crystallization and degradation process of synthesized strontium mercaptosuccinate functionalized poly(ε-caprolactone) by non-isothermal approach. Iran Polym J 28:549–562

    Article  CAS  Google Scholar 

  53. Chen CW, Hsu TS, Huang KW, Rwei SP (2020) Effect of 1, 2, 4, 5-benzenetetracarboxylic acid on unsaturated poly (butyleneadipate-co-butylene itaconate) copolyesters: synthesis, non-isothermal crystallization kinetics, thermal and mechanical properties. Polymers 12:1160

    Article  CAS  PubMed Central  Google Scholar 

  54. Vyazovkin S (2015) Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Funding of Laboratory of Polymer Processing Engineering, Hua Qiao University, Talent Introduction Fund of Fujian Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimei Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Li, W., Zeng, Z. et al. Non-isothermal crystallization kinetics of poly(phthalazinone ether sulfone)/MC nylon 6 in-situ composites. Iran Polym J 31, 869–882 (2022). https://doi.org/10.1007/s13726-022-01045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01045-9

Keywords

Navigation