Skip to main content
Log in

Effects of modified titanium dioxide nanoparticles on the thermal and mechanical properties of poly(l-lactide)-b-poly(ε-caprolactone)

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Incorporating titanium dioxide (TiO2) nanoparticles into the polymeric matrix offers an opportunity to obtain nanocomposites with improved functionality. In this study, the commercial TiO2 nanoparticles (TNP) were surface treated by different concentrations of aminopropyl triethoxy silane (APTS) as a coupling agent and triethylamine (Et3N) as a surface grafting catalyst by an aqueous process to prepare a nanocomposite with superior properties. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were performed to confirm the successful surface modification of TNP. The prepared modified TiO2 nanoparticles (mTNP) with different weight fractions were used as initiator for in-situ grafting ring-opening polymerization of poly(l-lactide)-b-poly(\(\varepsilon \)-caprolactone) P(LLA-b-CL). It was found that the mTNP content and the concentration of the coupling agents have essential roles in the molecular characteristics and thermal and mechanical properties of the nanocomposite. The results indicated that the samples having mTNP with a high concentration of APTS had higher molecular weight and superior thermal and mechanical properties. In addition, the prepared samples showed remarkably improved thermal and mechanical properties compared to a neat polylactide (PLLA). The described in-situ synthetic methodology allows an optimal reaction between the components of the synthesis system for the preparation of nanocomposites with improved thermal and mechanical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh AA, Genovese ME (2021) Green and sustainable packaging materials using thermoplastic starch. In: Athanassiou A (ed) Sustainable food packaging technology. Wiley-VCH GmbH

    Google Scholar 

  2. Mtibe A, Motloung MP (2021) Synthetic biopolymers and their composites: advantages and limitations—an overview. Macromol Rapid Commun 42:2100130

    Article  CAS  Google Scholar 

  3. Paul GP, Virivinti N (2022) An outlook on recent progress in poly(lactic acid): polymerization, modeling, and optimization. Iran Polym J 31:59–81

    Article  CAS  Google Scholar 

  4. Ates B, Koytep S, Ulu H, Gurces C, Thakur VK (2020) Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem Rev 120:9304–9362

    Article  CAS  PubMed  Google Scholar 

  5. Nagalakshmaiah M, Afrin S, Malladi RP, Elkoun S, Robert M, Ansari MA, Svedberg A, Karim Z (2019) Biocomposites: present trends and challenges for the future. Green composites for automotive applications. Elsevier, pp 197–215

    Chapter  Google Scholar 

  6. Ebrahimi H, Sharif F, Ramazani SAA (2021) Synthesis and characterization of poly (l-lactide)-block-poly(ε-caprolactone)-grafted titanium dioxide nanoparticles via ring-opening in situ grafting polymerization. Polym Compos 42:3722–3731

    Article  CAS  Google Scholar 

  7. Puthumana M, Krishnan PSG, Nayak SK (2020) Chemical modifications of PLA through copolymerization. Int J Polym Anal Charact 25:634–648

    Article  CAS  Google Scholar 

  8. Davoodi S, Oliaei E, Davachi SM, Hejazi I, Seyfi J, Shiroud Heidari B, Ebrahimi H (2016) Preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications. RSC Adv 6:39870–39882

    Article  CAS  Google Scholar 

  9. Kausar A (2021) Progress in green nanocomposites for high-performance applications. Mater Res Innov 25:53–65

    Article  CAS  Google Scholar 

  10. Song HJ, Chen XD, Fan JC, Xu QJ (2019) Balanced strength and toughness improvement in polylactide (PLA)/poly(1,4-cyclohexylene dimethylene terephthalate glycol)(PCTG) blends using various compatibilizers. Iran Polym J 28:991–999

    Article  CAS  Google Scholar 

  11. Yahia IS, Mohammed MI, Nawar AM (2019) Multifunction applications of TiO2/poly (vinyl alcohol) nanocomposites for laser attenuation applications. Phys B Cond Matter 556:48–60

    Article  CAS  Google Scholar 

  12. Mohr LC, Capelezzo AP, Baretta CRDM, Martins MAPM, Fiori MA, Mello JMM (2019) Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer. Polym Test 77:105867

    Article  CAS  Google Scholar 

  13. Cao Y, Xu P, Lv P, Lemstra PJ, Cai X, Yang W, Dong W, Chen M, Liu T, Du M, Ma P (2020) Excellent UV resistance of polylactide by interfacial stereocomplexation with double-shell-structured TiO2 nanohybrids. ACS Appl Mater Interf 12:49090–49100

    Article  CAS  Google Scholar 

  14. Benítez AJ, Lossada F, Zhu B, Rudolph T, Walther A (2016) Understanding toughness in bioinspired cellulose nanofibril/polymer nanocomposites. Biomacromol 17:2417–2426

    Article  Google Scholar 

  15. Ghari HS, Jalali-Arani A (2016) Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: study on the structure, cure behavior, static and dynamic-mechanical properties. Appl Clay Sci 119:348–357

    Article  Google Scholar 

  16. Kumar R, Rai B, Kumar G (2019) A simple approach for the synthesis of cellulose nanofiber reinforced chitosan/PVP bio nanocomposite film for packaging. J Polym Environ 27:2963–2973

    Article  CAS  Google Scholar 

  17. Zhang Q, Li D, Zhang H, Su G, Li G (2018) Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polym Bull 75:623–635

    Article  CAS  Google Scholar 

  18. Kashi S, Gupta RK, Kao N, Hadigheh SA, Bhattacharya SN (2018) Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices. J Mater Sci Technol 34:1026–1034

    Article  CAS  Google Scholar 

  19. Frone AN, Batalu D, Chiulan L, Oprea M, Gabor AR, Nicolae CA, Raditoiu V, Trusca R, Panaitescu DM (2020) Morpho-structural, thermal and mechanical properties of PLA/PHB/cellulose biodegradable nanocomposites obtained by compression molding, extrusion, and 3D printing. Nanomaterials 10:51

    Article  CAS  Google Scholar 

  20. Mohammadpour Velni S, Baniasadi H, Vaziri A (2018) Fabrication and characterization of antimicrobial starch-based nanocomposite films and modeling the process parameters via the RSM. Polym Compos 39:E584–E591

    Article  CAS  Google Scholar 

  21. Segura González EA, Olmos D, Lorente MA, Ve’laz I, González-Benito J (2018) Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymers 10:1365

    Article  PubMed Central  Google Scholar 

  22. Silva M, Alves NM, Paiva MC (2018) Graphene-polymer nanocomposites for biomedical applications. Polym Adv Technol 29:687–700

    Article  CAS  Google Scholar 

  23. Demirezen S, Cetinkaya HG, Kara M, Ygkubhanoglu F, Altindal S (2021) Synthesis, electrical and photo-sensing characteristics of the Al/(PCBM/NiO:ZnO)/p-Si nanocomposite structures. Sens Actuat A Phys 317:112449

    Article  CAS  Google Scholar 

  24. Cai C, Liu L, Fu Y (2019) Processable conductive and mechanically reinforced polylactide/graphene bionanocomposites through interfacial compatibilizer. Polym Compos 40:389–400

    Article  CAS  Google Scholar 

  25. Shankar S, Wang LF, Rhim JW (2018) Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater Sci Eng C 93:289–298

    Article  CAS  Google Scholar 

  26. Ren PG, Liu XH, Ren F, Zhong GJ, Ji X, Xu L (2017) Biodegradable graphene oxide nanosheets/poly-(butylene adipate-co-terephthalate) nanocomposite film with enhanced gas and water vapor barrier properties. Polym Test 58:173–180

    Article  CAS  Google Scholar 

  27. Chi H, Xue J, Zhang C, Chen H, Li L, Qin Y (2018) High pressure treatment for improving water vapour barrier properties of poly(lactic acid)/Ag nanocomposite films. Polymers 10:1011

    Article  PubMed Central  Google Scholar 

  28. Ong HL, Villagracia AR, Owi WT, Sam ST, Akil HM (2020) Revealing the water resistance, thermal and biodegradation properties of Citrus aurantifolia crosslinked Tapioca starch/nanocellulose bionanocomposites. J Polym Environ 28:3256–3269

    Article  CAS  Google Scholar 

  29. Camani PH, Toguchi JPM, Fiori APSM, dos Santos RD (2020) Impact of unmodified (PGV) and modified (Cloisite20A) nanoclays into biodegradability and other properties of (bio) nanocomposites. Appl Clay Sci 186:105453

    Article  CAS  Google Scholar 

  30. Wang Y, Sun C, Zhao X, Cui B, Zeng Z, Wang A, Liu G, Cui H (2016) The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res Lett 11:1–7

    Article  Google Scholar 

  31. Xiao Z, Guo P, Wang C (2015) Synthesis and characterization of TiO2/fluorocopolymer nanocomposites with core-shell structure. Colloid Polym Sci 293:307–312

    Article  CAS  Google Scholar 

  32. Mallick S, Ahmad Z, Touati F, Bhadra J, Shakoor RA, Al-Thani NJ (2018) PLA-TiO2 nanocomposites: thermal, morphological, structural, and humidity sensing properties. Ceram Int 44:16507–16513

    Article  CAS  Google Scholar 

  33. Wanag A, Sienkiewicz A, Rokicka-Konieczna P, Kusiak-Nejman E, Morawski AW (2020) Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability. J Environ Chem Eng 8:103917

    Article  CAS  Google Scholar 

  34. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Organ Coat 65:222–228

    Article  CAS  Google Scholar 

  35. Lu H, Lin J, Yang W, Liu L, Wang Y, Chen G, Huang W (2017) Effect of nano-TiO2 surface modification on polarization characteristics and corona aging performance of polyimide nano-composites. J Appl Polym Sci 134:45101

    Article  Google Scholar 

  36. Wang M, Zhang C, Zhao X, Wei C, Wang Z, Zhang L, An L, Zhang C (2021) Surface modification of nano-TiO2 microspheres. Advances in graphic communication, printing and packaging technology and materials. Springer, pp 593–598

    Chapter  Google Scholar 

  37. Ifuku S, Yano H (2015) Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite. Int J Biol Macromol 74:428–432

    Article  CAS  PubMed  Google Scholar 

  38. Wang G, Chen G, Wei Z, Yu T, Liu L, Wang P, Chang Y, Qi M (2012) A comparative study of TiO2 and surface-treated TiO2 nanoparticles on thermal and mechanical properties of poly(ε-caprolactone) nanocomposites. J Appl Polym Sci 125:3871–3879

    Article  CAS  Google Scholar 

  39. Zhao J, Milanova M, Warmoeskerken MMGG, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Colloid Surf A Physicochem Eng Aspect 413:273–279

    Article  CAS  Google Scholar 

  40. Chen Q, Yakovlev NL (2010) Adsorption and interaction of organosilanes on TiO2 nanoparticles. Appl Surf Sci 257:1395–1400

    Article  CAS  Google Scholar 

  41. Ognjanović M, Stanković V, Knežević S, Antić B, Vranješ-Djurić S (2020) TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. Microchem J 158:105150

    Article  Google Scholar 

  42. Ukaji E, Furusawa T, Sato M, Suzuki N (2007) The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl Surf Sci 254:563–569

    Article  CAS  Google Scholar 

  43. Ng HKM, Leo CP, Abdullah AZ (2017) Selective removal of dyes by molecular imprinted TiO2 nanoparticles in polysulfone ultrafiltration membrane. J Environ Chem Eng 5:3991–3998

    Article  Google Scholar 

  44. Abazović ND, Čomor MI, Dramićanin MD, Jovanović DJ, Ahrenkiel SP, Nedeljković JM (2006) Photoluminescence of anatase and rutile TiO2 particles. J Phys Chem B 110:25366–25370

    Article  PubMed  Google Scholar 

  45. Mugundan S, Rajamannan B, Viruthagiri G, Shanmugam N, Gobi R, Praveen P (2015) Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl Nanosci 5:449–456

    Article  CAS  Google Scholar 

  46. Li J, Peng WG, Tan YG, Weng YX, Wang M (2019) Adjusting distribution of multiwall carbon nanotubes in poly(l-lactide)/poly(oxymethylene) blends via constructing stereocomplex crystallites: toward conductive and microwave shielding enhancement. J Phys Chem C 123:27884–27895

    Article  CAS  Google Scholar 

  47. Jiang H, Wang XB, Li CY, Li JS, Xu FJ, Mao C, Yang WT, Shen J (2011) Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir 27:11575–11581

    Article  CAS  PubMed  Google Scholar 

  48. Castillo RV, Müller AJ, Raquez JM, Dubois P (2010) Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules 43:4149–4160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially cooperated by Amirkabir University of Technology (Tehran, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Sharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, H., Sharif, F. & Ramazani, S.A.A. Effects of modified titanium dioxide nanoparticles on the thermal and mechanical properties of poly(l-lactide)-b-poly(ε-caprolactone). Iran Polym J 31, 893–904 (2022). https://doi.org/10.1007/s13726-022-01039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01039-7

Keywords

Navigation