Skip to main content

Advertisement

Log in

Experimental and theoretical mechanical behavior of compatibilized polylactic acid/polyolefin elastomer blends for potential packaging applications

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The global accumulation and disposal of plastics has become a nightmare for environmentalists; therefore, the use of natural or synthetic biodegradable plastics  is necessary. Polylactic acid (PLA) is a green polymer with appropriate properties like biocompatibility and biodegradability, but similar to almost all green polymers, it suffers from poor mechanical properties, necessitating the use of a secondary polymer to make it suitable for packaging applications. Diverse polymers have been employed to improve the performance of PLA, but they are mostly expensive. Polyolefin elastomers (POE) are rubbery polymers having polyolefin backbone with reasonable price and properties for blending with PLA. In this work, PLA/POE blends were prepared by melt extrusion and several formulations were made. Two grades of POE together with two kinds of compatibilizers (ethylene–methyl acrylate-glycidyl methacrylate terpolymer and ethylene–vinyl acetate copolymer) were considered to develop mechanically reinforced 80/20/4 PLA/POE/compatibilizer blends. Scanning electron microscopy (SEM) indicated efficient compatibilization. The mechanical behavior of the prepared blends was investigated to find the blends showing the highest elasticity. Furthermore, constitutive models were used to predict mechanical properties, and the Bergström–Boyce model best fitted the data. The tensile and impact strength showed about 30% decrease and 900% increase, respectively. A good stiffness/toughness balance was observed for the sample compatibilized with the terpolymer. The novelty of this work is to combine experimental and theoretical analyses to predict the mechanical properties of PLA/POE systems. The employed theoretical framework was able to determine the model parameters and predict the yielding and strain hardening phenomena that are not typically applied to compatibilized polymer blends.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hirao K, Ohara H (2011) Synthesis and recycle of poly(l-lactic acid) using microwave irradiation. Polym Rev 51:1–22

    Article  CAS  Google Scholar 

  2. Auras RA, Lim LT, Selke SE, Tsuji H (2011) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New Jersey

    Google Scholar 

  3. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Pro Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  4. Vahabi H, Shabanian M, Aryanasab F, Mangin R, Laoutid F, Saeb MR (2018) Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly (lactic acid). Thermochim Acta 666:51–59

    Article  CAS  Google Scholar 

  5. Laoutid F, Vahabi H, Shabanian M, Aryanasab F, Zarrintaj P, Saeb M (2018) A new direction in design of bio-based flame retardants for poly (lactic acid). Fire Mater 42:914–924

    Article  CAS  Google Scholar 

  6. Shojaei S, Nikuei M, Goodarzi V, Hakani M, Khonakdar H, Saeb M (2019) Disclosing the role of surface and bulk erosion on the viscoelastic behavior of biodegradable poly (ε-caprolactone)/poly (lactic acid)/hydroxyapatite nanocomposites. J Appl Polym Sci 136:47151

    Article  CAS  Google Scholar 

  7. Song X, Cao L, Tanaka R, Shiono T, Cai Z (2019) Optically transparent functional polyolefin elastomer with excellent mechanical and thermal properties. ACS Macro Lett 8:299–303

    Article  CAS  Google Scholar 

  8. Hong CH, Lee YB, Bae JW, Jho JY, Uk Nam B, Chang DH, Yoon SH, Lee KJ (2005) Tensile properties and stress whitening of polypropylene/polyolefin elastomer/magnesium hydroxide flame retardant composites for cable insulating application. J Appl Polym Sci 97:2311–2318

    Article  CAS  Google Scholar 

  9. Da Silva ALN, Tavares MIB, Politano DP, Coutinho FMB, Rocha MCG (1997) Polymer blends based on polyolefin elastomer and polypropylene. J Appl Polym Sci 66:2005–2014

    Article  Google Scholar 

  10. Khosravi A, Fereidoon A, Khorasani MM, Naderi G, Ganjali MR, Zarrintaj P, Saeb MR, Gutiérrez TJ (2020) Soft and hard sections from cellulose-reinforced poly (lactic acid)-based food packaging films: a critical review. Food Pack Shelf Life 23:100429

    Article  Google Scholar 

  11. Feng Y, Hu Y, Yin J, Zhao G, Jiang W (2013) High impact poly (lactic acid)/poly (ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53:389–396

    Article  CAS  Google Scholar 

  12. Ho CH, Wang CH, Lin CI, Lee YD (2008) Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 49:3902–3910

    Article  CAS  Google Scholar 

  13. Hamad K, Kaseem M, Deri F (2012) Poly (lactic acid)/low density polyethylene polymer blends: preparation and characterization. Asia-Pacific J Chem Eng 7:S310–S316

    Article  CAS  Google Scholar 

  14. Kim YF, Choi CN, Kim YD, Lee KY, Lee MS (2004) Compatibilization of immiscible poly (l-lactide) and low density polyethylene blends. Fibers Polym 5:270–274

    Article  CAS  Google Scholar 

  15. Balakrishnan H, Hassan A, Wahit MU (2010) Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. J Elastomers Plast 42:223–239

    Article  CAS  Google Scholar 

  16. Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:8809–8823

    Article  CAS  Google Scholar 

  17. Pivsa-Art S, Kord-Sa-Ard J, Pivsa-Art W, Wongpajan R, Narongchai O, Pavasupree S, Hamada H (2016) Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia 89:353–360

    Article  CAS  Google Scholar 

  18. Nuñez K, Rosales C, Perera R, Villarreal N, Pastor J (2011) Nanocomposites of PLA/PP blends based on sepiolite. Polym Bull 67:1991–2016

    Article  CAS  Google Scholar 

  19. Wu M, Wu Z, Wang K, Zhang Q, Fu Q (2014) Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend. Polymer 55:6409–6417

    Article  CAS  Google Scholar 

  20. Hao Y, Liu Z, Zhang H, Wu Y, Xiao Y, Li Y, Tong Y (2019) Effect of reactive group types on the properties of poly (ethylene octane) toughened poly (lactic acid). J Polym Res 26:109

    Article  CAS  Google Scholar 

  21. Paran SMR, Naderi G, Javadi F, Shemshadi R, Saeb MR (2020) Experimental and theoretical analyses on mechanical properties and stiffness of hybrid graphene/graphene oxide reinforced EPDM/NBR nanocomposites. Mater Today Commun 22:100763

    Article  CAS  Google Scholar 

  22. Paran SMR, Das A, Khonakdar HA, Naderpour N, Heinrich G, Saeb MR (2019) Modeling and interpreting large deformation behavior of rubber nanocomposites containing carbon nanotubes and nanoplatelets. Polym Compos 40:E1548–E1558

    Article  CAS  Google Scholar 

  23. Paran SMR, Abdorahimi M, Shekarabi A, Khonakdar HA, Jafari SH, Saeb MR (2018) Modeling and analysis of nonlinear elastoplastic behavior of compatibilized polyolefin/polyester/clay nanocomposites with emphasis on interfacial interaction exploration. Compos Sci Technol 154:92–103

    Article  CAS  Google Scholar 

  24. Sain T, Meaud J, Yeom B, Waas AM, Arruda EM (2015) Rate dependent finite strain constitutive modeling of polyurethane and polyurethane–clay nanocomposites. Int J Solids Struct 54:147–155

    Article  CAS  Google Scholar 

  25. Paran SMR, Naderi G, Mosallanezhad H, Movahedifar E, Formela K, Saeb MR (2020) Microstructure and mechanical properties of carboxylated nitrile butadiene rubber/epoxy/XNBR-grafted halloysite nanotubes nanocomposites. Polymers 12:1192

    Article  CAS  PubMed Central  Google Scholar 

  26. Meng R, Yin D, Yang H, Xiang G (2020) Parameter study of variable order fractional model for the strain hardening behavior of glassy polymers. Phys A Stat Mech Appl 545:123763

    Article  CAS  Google Scholar 

  27. Józefiak K, Michalczyk R (2020) Prediction of structural performance of vinyl ester polymer concrete using FEM elasto-plastic model. Materials 13:4034

    Article  PubMed Central  CAS  Google Scholar 

  28. Cho J, Fenner J, Werner B, Daniel IM (2010) A constitutive model for fiber-reinforced polymer composites. J Compos Mater 44:3133–3150

    Article  CAS  Google Scholar 

  29. Bergström J, Boyce M (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46:931–954

    Article  Google Scholar 

  30. Mulliken A, Boyce M (2006) Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356

    Article  CAS  Google Scholar 

  31. Shim J, Mohr D (2011) Rate dependent finite strain constitutive model of polyurea. Int J Plast 27:868–886

    Article  CAS  Google Scholar 

  32. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    Article  CAS  Google Scholar 

  33. Green M, Tobolsky A (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92

    Article  CAS  Google Scholar 

  34. Johnson A, Quigley C (1992) A viscohyperelastic Maxwell model for rubber viscoelasticity. Rubber Chem Technol 65:137–153

    Article  CAS  Google Scholar 

  35. Johnson AR, Stacer RG (1993) Rubber viscoelasticity using the physically constrained system’s stretches as internal variables. Rubber Chem Technol 66:567–577

    Article  CAS  Google Scholar 

  36. Roland C (1989) Network recovery from uniaxial extension. I. Elastic equilibrium. Rubber Chem Technol 62:863–879

    Article  CAS  Google Scholar 

  37. Dal H, Kaliske M (2009) Bergström–Boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the FE method. Comput Mech 44:809–823

    Article  Google Scholar 

  38. Quintavalla S, Johnson S (2004) Extension of the Bergstrom–Boyce model to high strain rates. Rubber Chem Technol 77:972–981

    Article  CAS  Google Scholar 

  39. Mackey DS, Mackey N, Mehl C, Mehrmann V (2013) Skew-symmetric matrix polynomials and their Smith forms. Linear Algebra Appl 438:4625–4653

    Article  Google Scholar 

  40. Sansour C, Karšaj I, Sorić J (2007) On a formulation for anisotropic elastoplasticity at finite strains invariant with respect to the intermediate configuration. J Mech Phys Solids 55:2406–2426

    Article  Google Scholar 

  41. Hoon H, Yang WH (1991) A general algorithm for limit solutions of plane stress problems. Int J Solids Struct 28:727–738

    Article  Google Scholar 

  42. Meng F, Pritchard RH, Terentjev EM (2016) Stress relaxation, dynamics, and plasticity of transient polymer networks. Macromolecules 49:2843–2852

    Article  CAS  Google Scholar 

  43. Anand L, Aslan O, Chester SA (2012) A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands. IntJ Plast 30:116–143

    Article  Google Scholar 

  44. Kim JH, Barlat F, Pierron F, Lee MG (2014) Determination of anisotropic plastic constitutive parameters using the virtual fields method. Exp Mech 54:1189–1204

    Article  Google Scholar 

  45. Mostafapoor F, Khosravi A, Fereidoon A, Khalili R, Jafari SH, Vahabi H, Formela K, Saeb MR (2020) Interface analysis of compatibilized polymer blends. Compatibil Polym Blends 2020:349–371

    Article  Google Scholar 

  46. Rastin H, Jafari SH, Saeb MR, Khonakdar HA, Wagenknecht U, Heinrich G (2014) Mechanical, rheological, and thermal behavior assessments in HDPE/PA-6/EVOH ternary blends with variable morphology. J Polym Res 21:1–13

    Article  CAS  Google Scholar 

  47. Jazani OM, Arefazar A, Jafari SH, Peymanfar MR, Saeb MR, Talaei A (2013) SEBS-g-MAH as a reactive compatibilizer precursor for PP/PTT/SEBS ternary blends: morphology and mechanical properties. PolymPlast Technol Eng 52:206–212

    Article  CAS  Google Scholar 

  48. Tavakoli Anaraki F, Saeb MR, Rastin H, Ghiyasi S, Khonakdar HA, Goodarzi V, Khalili R, Mostafapoor F, Jafari SH (2017) A probe into the status quo of interfacial adhesion in the compatibilized ternary blends with core/shell droplets: selective versus dictated compatibilization. J Appl Polym Sci 134:45503

    Article  CAS  Google Scholar 

  49. Hassanpour Asl F, Saeb MR, Jafari SH, Khonakdar HA, Rastin H, Pötschke P, Vogel R, Stadler FJ (2018) Looking back to interfacial tension prediction in the compatibilized polymer blends: discrepancies between theories and experiments. J Appl Polym Sci 135:46144

    Article  CAS  Google Scholar 

  50. Rastin H, Saeb MR, Jafari SH, Khonakdar HA, Kritzschmar B, Wagenknecht U (2015) Reactive compatibilization of ternary polymer blends with core-shell type morphology. Macromol Mater Eng 300:86–98

    Article  CAS  Google Scholar 

  51. Jazani OM, Goodarzi V, Hemmati F, Saeb MR (2016) Structure-property relationships in ternary polymer blends with core–shell inclusions: revisiting the critical role of the viscosity ratio. J Polym Res 23:1–14

    Article  CAS  Google Scholar 

  52. Saeb MR, Khonakdar HA, Jafari SH, Jalalifar N, Razban M, Wagenknecht U (2014) Interface evaluation in the ternary blends of HDPE/PA-6/EVOH. Polym Bull 71:613–624

    Article  CAS  Google Scholar 

  53. Saeb MR, Khonakdar HA, Razban M, Jafari SH, Garmabi H, Wagenknecht U (2012) Morphology prediction in HDPE/PA-6/EVOH ternary blends: defining the role of elasticity ratio. Macromol Chem Phys 213:1791–1802

    Article  CAS  Google Scholar 

  54. Saeb MR, Khonakdar HA, Moghri M, Razban M, Jazani OM, Alorizi AE (2014) Identifying morphological changes in immiscible polyolefin ternary blends. Polym Plast Technol Eng 53:1142–1149

    Article  CAS  Google Scholar 

  55. Hou AL, Qu JP (2019) Super-toughened poly (lactic acid) with poly (ε-caprolactone) and ethylene-methyl acrylate-glycidyl methacrylate by reactive melt blending. Polymers 11:771

    Article  CAS  PubMed Central  Google Scholar 

  56. Ferreira RTL, Amatte IC, Dutra TA, Bürger D (2017) Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos B 124:88–100

    Article  CAS  Google Scholar 

  57. Gonca V, Shvabs J (2011) Definition of Poisson’s ratio of elastomers. Eng Rural Develop 2:428–433

    Google Scholar 

  58. Khalili R, Jafari SH, Saeb MR, Khonakdar HA, Wagenknecht U, Heinrich G (2014) Toward in situ compatibilization of polyolefin ternary blends through morphological manipulations. Macromol Mater Eng 299:1197–1212

    Article  CAS  Google Scholar 

  59. Javadi E, Babaei A, Nouri M (2017) Correlation of the morphological and mechanical properties of a biodegradable blend based on polylactic acid. J Macromol Sci B 56:194–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdolhossein Fereidoon or Mohammad Reza Saeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, A., Fereidoon, A., Khorasani, M.M. et al. Experimental and theoretical mechanical behavior of compatibilized polylactic acid/polyolefin elastomer blends for potential packaging applications. Iran Polym J 31, 651–663 (2022). https://doi.org/10.1007/s13726-022-01028-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01028-w

Keywords

Navigation