Skip to main content
Log in

Photocatalytic degradation of epoxidized natural rubber latex using hydrogen peroxide and TiO2 nanocrystal

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A characteristic chain cleavage in epoxidized natural rubber (ENR) is similar to the natural rubber (NR), where the chain is oxidized and cleaved. The bond cleavage in ENR could occur in both oxirane and double bond groups, depending on the method used. In this work, 50% mol epoxidized natural rubber (ENR50) was degraded under ultraviolet (UV) light in latex state to yield low molecular weight ENR50 (LENR). ENR50 latex was subjected to UV light in the presence of hydrogen peroxide (H2O2) as a reagent and titanium dioxide (TiO2) as a photocatalyst. The properties of the sample were characterized using gel permeation chromatography (GPC), Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR). The results showed ENR50 latex can be degraded under UV light. The degradation was accelerated in the presence of H2O2 and TiO2, which then determined the chemical structure of LENR. The molecular weight of ENR50 significantly reduced from 161.77 × 103 g/mol to 14.57 × 103 and 6.40 × 103 g/mol after 24 and 48 h of photodegradation, respectively. Chain breaking was found to be dominant in the olefinic (C = C) group, whilst the epoxide group was not affected. The presence of TiO2 did not affect the efficiency of the degradation reaction but induced the opening of the epoxy group. These were confirmed from FTIR and NMR spectroscopy analyses, whereby the degraded sample showed the presence of carbonyl and hydroxyl groups, resulted from the chain breaking and ring opening.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tanrattanakul V, Wattanathai B, Tiangjunya A, Muhamud P (2003) In situ epoxidized natural rubber: improved oil resistance of natural rubber. J Appl Polym Sci 90:261–269. https://doi.org/10.1002/app.12706

    Article  CAS  Google Scholar 

  2. Gelling IR (1991) Epoxidized natural rubber. J Nat Rub Res 6:184–205

    CAS  Google Scholar 

  3. Baker CSL, Gelling IR, Newell R (1984) Epoxidized natural rubber. Rubber Chem Technol 58:67–85

    Article  Google Scholar 

  4. Zeng ZQ, Yu HP, Wang QF, Lu G (2008) Effects of coagulation processes on properties of epoxidized natural rubber. J Appl Polym Sci 109:1944–1949. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  5. Poh BT, Gan CF (2010) Viscosity and peel strength of magnesium oxide-filled adhesive prepared from epoxidized natural rubber (ENR 25). Polym Plast Technol Eng 49:191–194. https://doi.org/10.1080/03602550903284289

    Article  CAS  Google Scholar 

  6. Klinklai W, Kawahara S, Marwanta E, Mizumo T, Isono Y, Ohno H (2006) Ionic conductivity of highly deproteinized natural rubber having various amount of epoxy group mixed with lithium salt. Solid State Ionics 177:3251–3257. https://doi.org/10.1016/j.ssi.2006.08.006

    Article  CAS  Google Scholar 

  7. Heping Y, Sidong L, Zheng P (1999) Preparation and study of epoxidized natural rubber. J Therm Anal Calorim 58:293–299. https://doi.org/10.1023/A:1010199013587

    Article  CAS  Google Scholar 

  8. Phinyocheep P, Phetphaisit CW, Derouet D, Campistron I, Brosse JC (2005) Chemical degradation of epoxidized natural rubber using periodic acid: preparation of epoxidized liquid natural rubber. J Appl Polym Sci 95:6–15. https://doi.org/10.1002/app.20812

    Article  CAS  Google Scholar 

  9. Rooshenass P, Yahya R, Gan SN (2016) Comparison of three different degradation methods to produce liquid epoxidized natural rubber. Rubber Chem Technol 89:177–198. https://doi.org/10.5254/RCT.15.84878

    Article  CAS  Google Scholar 

  10. Saetung A, Rungvichaniwat A, Campistron I, Klinpituksa P, Laguerre A, Phinyocheep P, Pilard JF (2010) Controlled degradation of natural rubber and modification of the obtained telechelic oligoisoprenes: preliminary study of their potentiality as polyurethane foam precursors. J Appl Polym Sci 117:1279–1289. https://doi.org/10.1002/app.31907

    Article  CAS  Google Scholar 

  11. Thitithammawong A, Srangkhum S, Rungvichaniwat A (2011) Hydroxytelechelic natural rubber from natural rubber and epoxidised natural rubber. J Rubber Res 14:230–240

    CAS  Google Scholar 

  12. Fainleib A, Pires RV, Lucas EF, Soares BG (2013) Degradation of non-vulcanized natural rubber-renewable resource for fine chemicals used in polymer synthesis. Polímeros Ciência e Tecnol 23:441–450. https://doi.org/10.4322/polimeros.2013.070

    Article  CAS  Google Scholar 

  13. Phinyocheep P (2014) Chemistry, manufacture and applications of natural rubber. Elsevier, Amsterdam

    Google Scholar 

  14. Muhammad YH, Ahmad S, Abu Bakar MA, Mamun AA, Heim HP (2015) Mechanical properties of hybrid glass/kenaf fibre-reinforced epoxy composite with matrix modification using liquid epoxidised natural rubber. J Reinf Plast Compos 34:896–906. https://doi.org/10.1177/0731684415584431

    Article  CAS  Google Scholar 

  15. Kargarzadeh H, Ahmad I, Abdullah I, Thomas R, Dufrense A, Thomas S, Hassan A (2015) Functionalized liquid natural rubber and liquid epoxidized natural rubber: a promising green toughening agent for polyester. J Appl Polym Sci 132:1–15. https://doi.org/10.1002/app.41292

    Article  CAS  Google Scholar 

  16. Syed Mustafa SNI, Che Man SH, Baharulrazi N, Mohamad Z, Hassan A, Yusof NH (2020) Mechanical and thermal properties of polylactic acid/liquid epoxidized natural rubber blends. Chem Eng Trans 78:103–108. https://doi.org/10.3303/CET2078018

    Article  Google Scholar 

  17. Bijarimi M, Ahmad S, Rasid R (2014) Melt blends of poly (lactic acid)/natural rubber and liquid epoxidised natural rubber. J Rubber Res 17:57–68

    Google Scholar 

  18. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2011) Effect of ethylene carbonate (EC) plasticizer on poly (vinyl chloride)-liquid 50% epoxidised natural rubber (LENR50) based polymer electrolyte. Mater Sci Appl 02:817–825. https://doi.org/10.4236/msa.2011.27111

    Article  CAS  Google Scholar 

  19. Phetphaisit CW, Namahoot J, Saengkiettiyut K, Ruamcharoen J, Ruamcharoen P (2015) Green metal organic coating from recycled PETs and modified natural rubber for the automobile industry. Prog Org Coatings 86:181–189. https://doi.org/10.1016/j.porgcoat.2015.04.025

    Article  CAS  Google Scholar 

  20. Basheer Khan AS, Che Man SH, Baharulrazi N, Othman N (2020) Preparation and characterization of hydroxyl terminated liquid epoxidized natural rubber. Chem Eng Trans 78:157–162. https://doi.org/10.3303/CET2078027

    Article  Google Scholar 

  21. Salehuddin SMF, Baharulrazi N, Che Man SH, Wan Ali WK, Yusof NH (2020) The characterization of hydroxyl terminated epoxidized natural rubber (HTENR) via oxidation degradation method. Chem Eng Trans 78:151–156. https://doi.org/10.3303/CET2078026

    Article  Google Scholar 

  22. Yusof NH, Darji D, Mohd Rasdi FR, Baratha Nesan KV (2021) Preparation and characterisation of liquid epoxidised natural rubber in latex stage by chemical degradation. J Rubber Res 24:93–106. https://doi.org/10.1007/s42464-020-00076-2

    Article  CAS  Google Scholar 

  23. Panwiriyarat W, Tanrattanakul V, Pilard JF, Pasetto P, Khaokong C (2013) Effect of the diisocyanate structure and the molecular weight of diols on bio-ased polyurethanes. J Appl Polym Sci 130:453–462. https://doi.org/10.1002/app.39170

    Article  CAS  Google Scholar 

  24. Panwiriyarat W, Tanrattanakul V, Jean-Francois P, Khaokong C (2011) Synthesis and characterization of block copolymer from natural rubber, toluene-2,4-diisocyanate and poly(epsilon-caprolactone) diol-based polyurethane. Eco-Mater Proc Des 695:316–319. https://doi.org/10.4028/www.scientific.net/MSF.695.316

    Article  CAS  Google Scholar 

  25. Saetung A, Kaenhin L, Klinpituksa P, Klinpituksa P, Rungvichaniwat A, Tulyapitak T, Munleh S, Campistron I, Pilard JF (2012) Synthesis, characteristic, and properties of waterborne polyurethane based on natural rubber. J Appl Polym Sci 124:2741–2752. https://doi.org/10.1002/app.35318

    Article  CAS  Google Scholar 

  26. Phinyocheep P, Duangthong S (2000) Ultraviolet-curable liquid natural rubber. J Appl Polym Sci 78:1478–1485. https://doi.org/10.1002/1097-4628(20001121)78:8%3c1478::AID-APP30%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  27. Ooi ZX, Ismail H, Bakar AA (2014) Study on the ageing characteristics of oil palm ash reinforced natural rubber composites by introducing a liquid epoxidized natural rubber coating technique. Polym Test 37:156–162. https://doi.org/10.1016/j.polymertesting.2014.05.003

    Article  CAS  Google Scholar 

  28. Ratnam CT (2000) Electron beam irradiation of epoxidized natural rubber. Nucl Instrum Methods Phys Res B 171:455–464

    Article  CAS  Google Scholar 

  29. Decker C, Le Xuan H, Viet NT (1995) Photoinitiated cationic polymerization of epoxidized liquid natural rubber. J Polym Sci A 33:2759–2772

    Article  CAS  Google Scholar 

  30. Morand JL (1976) Chain scission in the oxidation of polyisoprene. Rubber Chem Technol 50:373–396

    Article  Google Scholar 

  31. Ratnam CT, Nasir M, Baharin A, Zaman K (2001) Evidence of irradiation-induced crosslinking in miscible blends of poly (vinyl chloride)/epoxidized natural rubber in presence of trimethylolpropane triacrylate. J Appl Polym Sci 81:1914–1925. https://doi.org/10.1002/app.1624

    Article  CAS  Google Scholar 

  32. Mohammad NA, Ahmad SH, Mohammad NENA, Hassan NHM (2018) Mechanical properties of epoxy matrix composites toughened by liquid epoxidized natural rubber (LENR). Int J Integr Eng 10:160–163. https://doi.org/10.30880/ijie.2018.10.08.025

    Article  Google Scholar 

  33. Ibrahim S, Othman N, Sreekantan S, Tan KS, Mohd Nor Z, Ismail H (2018) Preparation and characterization of low-molecular-weight natural rubber latex via photodegradation catalyzed by nano TiO2. Polymers 10:1216. https://doi.org/10.3390/polym10111216

    Article  CAS  PubMed Central  Google Scholar 

  34. Nijpanich S, Nimpaiboon A, Rojruthai P, Sakdapipanich J (2021) Hydroxyl-terminated saponified natural rubber based on the H2O2/P25-TiO2 powder UVC-irradiation system. Polymers 13:1319. https://doi.org/10.3390/polym13081319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ravindran T, Nayar MRG, Francis DJ (1988) Production of hydroxyl-terminated liquid natural rubber-mechanism of photochemical depolymerization and hydroxylation. J Appl Polym Sci 35:1227–1239. https://doi.org/10.1002/app.1988.070350509

    Article  CAS  Google Scholar 

  36. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229. https://doi.org/10.1016/S0167-5729(02)00100-0

    Article  CAS  Google Scholar 

  37. Zhang Y, Crittenden JC, Hand DW, Perram DL (1994) Fixed-bed photocatalysts for solar decontamination of water. Environ Sci Technol 28:435–442. https://doi.org/10.1021/es00052a015

    Article  CAS  PubMed  Google Scholar 

  38. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  39. Tasakorn P, Amatyakul W (2008) Photochemical reduction of molecular weight and number of double bonds in natural rubber film. Korean J Chem Eng 25:1532–1538. https://doi.org/10.1007/s11814-008-0252-6

    Article  CAS  Google Scholar 

  40. Ratnam CT, Nasir M, Baharin A, Zaman K (2000) Electron beam irradiation of epoxidized natural rubber: FTIR studies. Polym Int 1701:1693–1701

    Article  Google Scholar 

  41. Wayakron Phetphaisit C, Phinyocheep P, Phetphaisit CW, Phinyocheep P (2003) Kinetics and parameters affecting degradation of purified natural rubber. J Appl Polym Sci 90:3546–3555. https://doi.org/10.1002/app.12982

    Article  CAS  Google Scholar 

  42. Tanaka Y, Sakaki T, Kawasaki A, Hayasi M, Kanamaru E, Shibata K (1995) Depolymerized natural rubber and process for preparation thereof. Eur Pat EP 0 702 029 A1

  43. Tangpakdee J, Mizokoshi M, Endo A, Tanaka Y (1998) Novel method for preparation of low molecular weight natural rubber latex. Rubber Chem Technol 71:795–802. https://doi.org/10.5254/1.3538505

    Article  CAS  Google Scholar 

  44. Tanjung FA, Hassan A, Hasan M (2015) Use of epoxidized natural rubber as a toughening agent in plastics. J Appl Polym Sci 132:42270. https://doi.org/10.1002/app.42270

    Article  CAS  Google Scholar 

  45. Rooshenass P (2017) Investigation of different degradation methods to prepare liquid epoxidized natural rubber for coating applications. PhD thesis, University of Malaya

  46. Pavia D, Lampman G, Kriz G, Vyvyan J (2008) Introduction to spectroscopy. Cengage Learning, Stamford

    Google Scholar 

  47. Azhar NHA, Jamaluddin N, Md Rasid H, Mohd Yusof MF, Yusoff SFM (2015) Studies on hydrogenation of liquid natural rubber using diimide. Int J Polym Sci 2015:243038. https://doi.org/10.1155/2015/243038

    Article  CAS  Google Scholar 

  48. Thitithammawong A, Srangkhum S, Rungvichaniwat A (2011) Hydroxyltelechelic natural rubber from rubber and epoxidised natural rubber. J Rubb Res 14:230–240

    CAS  Google Scholar 

  49. Dahham OS, Hamzah R, Abu Bakar M, Zulkepli NN, Ting SS, Omar MF, Adam T, Muhamad K, Dahham SS (2018) Synthesis and structural studies of an epoxidized natural rubber/titania (ENR-50/TiO2) hybrid under mild acid conditions. Polym Test 65:10–20. https://doi.org/10.1016/j.polymertesting.2017.11.005

    Article  CAS  Google Scholar 

  50. Bradbury JH, Perera MC (1985) Epoxidation of natural rubber studied by NMR spectroscopy. J Appl Polym Sci 30:3347–3364. https://doi.org/10.1002/app.1985.070300817

    Article  CAS  Google Scholar 

  51. Hamzah R, Bakar MA, Dahham OS, Zulkepli NN, Dahham SS (2016) A structural study of epoxidized natural rubber (ENR-50) ring opening under mild acidic condition. J Appl Polym Sci 133:44123. https://doi.org/10.1002/app.44123

    Article  CAS  Google Scholar 

  52. Nghia PT, Onoe H, Yamamoto Y, Kawahara S (2008) Hydrogenation of natural rubber having epoxy group. Colloid Polym Sci 286:993–998. https://doi.org/10.1007/s00396-008-1859-1

    Article  CAS  Google Scholar 

  53. Giang LD, Thao DLM, Huong HT, Thu Hiep LT (2016) Synthesis of hydroxyl terminated liquid natural rubber by oxidative depolymerization of deproteinized natural rubber. J Sci Technol 54:340–346. https://doi.org/10.15625/0866-708X/54/3/7240

    Article  Google Scholar 

Download references

Funding

The authors wish to acknowledge the technical and financial supports from Malaysian Rubber Board under SEAC grant no. S16FCB0605 and Universiti Sains Malaysia under FRGS grant no. 203.PBAHAN.6071350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadras Othman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S., Othman, N., Baratha Nesan, K.V. et al. Photocatalytic degradation of epoxidized natural rubber latex using hydrogen peroxide and TiO2 nanocrystal. Iran Polym J 31, 741–750 (2022). https://doi.org/10.1007/s13726-022-01025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01025-z

Keywords

Navigation