Skip to main content

Advertisement

Log in

Synthesis of novel water-soluble chitosan-based “off–on” fluorescent probes for successive recognitions of Fe3+ and F ions

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Water-soluble fluorescent probes have been synthesised by chemical labelling of 9-anthraldehyde onto chitosan via Schiff base reaction in the presence of a biocompatible polymer, i.e., poly(ethylene glycol) (PEG). Interestingly, PEG controlled the much needed water-solubility of the probe through hydrogen bonding whereas its proportion was optimized to achieve the required water solubility of the product. The synthesised compound was characterised by various techniques such as Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, fluorescence studies, nuclear magnetic resonance spectroscopy, scanning electron microscopy, thermogravimetric analysis-differential thermogravimetry and time-correlated single-photon counting. The fluorescence signal of the probe was quenched (turn off) upon binding to Fe3+ ions and was regenerated (turn on) quantitatively due to the addition of F ions. Further, the photo physical process (off and on) was understood in the light of photo-induced electron transfer and complex formation. Again, the static quenching mechanism was understood by life-time measurement. The detection limits for Fe3+ and F ions were found to be (2.98 × 10–7 M) and (3.12 × 10–7 M) in the “turn off” and “turn-on” modes, respectively. The synthesized materials were exposed to the simultaneous detection of Fe3+ and F ions for the first time. The developed material and detection technique were robust, selective and environmentally benign. Such “off–on” fluorescent probe being water soluble and highly photo-stable showed potential suitability for simultaneous recognition of Fe3+ and F ions in the real systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Paut A, Prkic A, Mitar I, Boskovic P, Jozic D, Jakic M, Vukusic T (2021) Potentiometric response of solid-state sensors based on ferric phosphate for iron(III) determination. Sensors 21:1612. https://doi.org/10.3390/s21051612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Song F, Zhang J, Zhang YQ, Du L, Kan C (2018) Highly selective fluorescent probe based on a rhodamine B and furan-2-carbonyl chloride conjugate for detection of Fe3+ in cells. Tetrahedron Lett 59:3756–3762. https://doi.org/10.1016/j.tetlet.2018.09.003

    Article  CAS  Google Scholar 

  3. Wessling-Resnick M (2017) Excess iron: considerations related to development and early growth. Am J Clin Nutr 106:1600S-1605S. https://doi.org/10.3945/ajcn.117.155879

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singh N, Mulrooney RC, Kaur N, Callan JF (2008) A nanoparticle based chromogenic chemosensor for the simultaneous detection of multiple analytes. Chem Commun 40:4900–4902. https://doi.org/10.1039/b813423e

    Article  CAS  Google Scholar 

  5. Goswami S, Das S, Aich K, Sarkar D, Mondal TK, Quah CK, Fun HK (2013) CHEF induced highly selective and sensitive turn-on fluorogenic and colorimetric sensor for Fe3+. Dalton Trans 42:15113–15119. https://doi.org/10.1039/C3DT51974K

    Article  CAS  PubMed  Google Scholar 

  6. Chavali R, Gunda NSK, Naicker S, Mitra SK (2015) Rapid detection of fluoride in potable water using a novel fluorogenic compound 7-O-tert-butyldiphenylsilyl-4-methylcoumarin. Anal Chem Res 6:26–31. https://doi.org/10.1016/j.ancr.2015.10.003

    Article  CAS  Google Scholar 

  7. Sahoo SK, Crisponi G (2019) Recent advances on iron(III) selective fluorescent probes with possible applications in bio imaging. Molecules 24:32671–326732. https://doi.org/10.3390/molecules24183267

    Article  CAS  Google Scholar 

  8. Achyuthan KE, Lu L, Lopezc GP, Whitten DG (2006) Supramolecular photochemical self assemblies for fluorescence “turn on” and “turn off” assays for chem-bio-helices. Photochem Photobiol Sci 5:931–937. https://doi.org/10.1039/b607884m

    Article  CAS  PubMed  Google Scholar 

  9. Aragay G, Alarcón G, Pons J, Font-Bardía M, Merkoçi A (2012) Medium dependent dual turn-on/turn-off fluorescence system for heavy metal ions sensing. J Phys Chem C 116:1987–1994. https://doi.org/10.1021/jp210687v

    Article  CAS  Google Scholar 

  10. Zhao H, Al-Atar U, Pace TCS, Bohne C, Branda NR (2008) High-contrast fluorescence switching using a photo responsive dithienylethene coordination compound. J Photochem Photobiol A 200:74–82. https://doi.org/10.1016/j.jphotochem.2008.06.010

    Article  CAS  Google Scholar 

  11. Ng SM, Koneswaran M, Narayanaswamy R (2016) A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv 6:21624–21661. https://doi.org/10.1039/C5RA24987B

    Article  CAS  Google Scholar 

  12. Rizvi SB, Ghaderi S, Keshtgar M, Seifalian AM (2010) Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev 1:5161. https://doi.org/10.3402/nano.v1i0.5161

    Article  CAS  Google Scholar 

  13. Yong X, Wan W, Su M, Lu WY, Yan Y, Qu J, Liu R, Masuda T (2013) Thiourea-functionalized poly(phenyleneethynylene): fluorescent chemosensors for anions and cations. Polym Chem 4:4126–4133. https://doi.org/10.1039/c3py00359k

    Article  CAS  Google Scholar 

  14. Lai T, Zheng E, Chen L, Wang X, Kong L, You C, Ruan Y, Weng X (2013) Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III). Nanoscale 5:8015–8021. https://doi.org/10.1039/C3NR02014B

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Ren X, Merg X, Tan L, Chen D, Tang F (2013) Quantum dots-based fluorescent probes for turn-on and turn-off sensing of butyrylcholine sterase. Biosens Bioelectron 44:204–209. https://doi.org/10.1016/j.bios.2013.01.034

    Article  CAS  PubMed  Google Scholar 

  16. Becuwe M, Cazier F, Woisel P, Delattre F (2013) Turn-on/turn-off fluorescent hybrid silica nanoparticles. A new promising material for selective anions’ sensing. Colloids Surf A 433:88–94. https://doi.org/10.1016/j.colsurfa.2013.04.030

    Article  CAS  Google Scholar 

  17. Ghezelsefluo S, Keyvan RJ, Hajiali M, Mahdavian AR (2021) Rhodamine-based fluorescent polyacrylic nanoparticles: a highly selective and sensitive chemosensor for Fe(II) and Fe(III) cations in water. J Environ Chem Eng 9:105082. https://doi.org/10.1016/j.jece.2021.105082

    Article  CAS  Google Scholar 

  18. Sarkar PK, Kar P, Halder A, Lemmens P, Pal SK (2019) Development of highly efficient dual sensor based on carbon dots for direct estimation of iron and fluoride ions in drinking water. Chem Sel 4:4462–4471. https://doi.org/10.1002/slct.201900453

    Article  CAS  Google Scholar 

  19. Hossain SM, Dam GK, Mishra S, Sing AK (2020) A nano-molar level fluorogenic and oxidation state-selective chromogenic dual reversible chemosensor for multiple targets, Cu2+/S2− and Fe3+/F ions. New J Chem 44:15186–15194. https://doi.org/10.1039/D0NJ02777D

    Article  CAS  Google Scholar 

  20. Wu X, Niu Q, Li T (2016) A novel urea-based “turn-on” fluorescent sensor for detection of Fe3+/F ions with high selectivity and sensitivity. Sens Actuators B Chem 222:714–720. https://doi.org/10.1016/j.snb.2015.08.097

    Article  CAS  Google Scholar 

  21. Bhalla V, Gupta A, Kumar M (2013) Fe3+-ensemble of triazole appended pentacenequinone derivative for ‘“turn-on”’ detection of fluoride ions. Talanta 105:152–157. https://doi.org/10.1016/j.talanta.2012.11.044

    Article  CAS  PubMed  Google Scholar 

  22. Dong X, Zhou Y, Song Y, Qu J (2015) Anthracene-Fe3+ ensemble based turn-on fluorescent probes for selective detection of fluoride. J Fluor Chem 178:61–67. https://doi.org/10.1016/j.jfluchem.2015.06.025

    Article  CAS  Google Scholar 

  23. Desai NK, Kolekar GB, Patil SR (2014) Off–on fluorescent polyanthracene for recognition of ferric and fluoride ions in aqueous acidic media: application in pharmaceutical and environmental analysis. New J Chem 38:4394–4403. https://doi.org/10.1039/c4nj00675e

    Article  CAS  Google Scholar 

  24. Li B, Gu X, Wang M, Liu X, Xu K (2021) A novel “off-on-off” fluorescent probe for sensing of Fe3+ and F successively in aqueous solution and its application in cells. Dyes Pigm 194:109637. https://doi.org/10.1016/j.dyepig.2021.109637

    Article  CAS  Google Scholar 

  25. Tronc F, Li M, Lu J, Winnik MA, Kaul BL, Graciet JC (2003) Fluorescent polymer particles by emulsion and mini emulsion polymerization. J Polym Sci A Polym Chem 41:766–778. https://doi.org/10.1002/pola.10619

    Article  CAS  Google Scholar 

  26. Wu J, Weimin L, Jiechao G, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495. https://doi.org/10.1039/c0cs00224k

    Article  CAS  PubMed  Google Scholar 

  27. Huang D, Gao Z, Yi H, Bing Y, Niu C, Guo Q, Lai C (2015) A facile fluorescent probe based on anthraldehyde for trace Fe(III) ion determination in neutral aqueous solution. Anal Methods 7:353. https://doi.org/10.1039/c4ay02211d

    Article  CAS  Google Scholar 

  28. Cicekbilek F, Yilmaz B, Bayrakci M, Gezici O (2019) An application of a Schiff-base type reaction in the synthesis of a new rhodamine-based Hg(II)-sensing agent. J Fluoresc 30:1349–1358. https://doi.org/10.1007/s10895-019-02468-z

    Article  Google Scholar 

  29. Mahajan PG, Desai NK, Dalavi DK, Bhopate DP, Kolekar GB, Patil SR (2015) Cetyltrimethylammonium bromide capped 9-anthraldehyde nanoparticles for selective recognition of phosphate anion in aqueous solution based on fluorescence quenching and application for analysis of chloroquine. J Fluoresc 25:31–38. https://doi.org/10.1007/s10895-014-1451-7

    Article  CAS  PubMed  Google Scholar 

  30. Guo L, Tang T, Hu L, Yang M (2019) A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron(III), iron(II), and copper(II) ions. Anal Methods 11:642–647. https://doi.org/10.1039/C8AY02526F

    Article  Google Scholar 

  31. Wang B, Hai J, Liu Z, Wang Q, Yang Z, Sun S (2010) Selective detection of iron(III) by rhodamine-modified Fe3O4 nanoparticles. Angew Chem Int Ed 49:4576–4579. https://doi.org/10.1002/anie.201001373

    Article  CAS  Google Scholar 

  32. Shah BR, Dvorak P, Velisek J, Mraz J (2021) Opening a new gateway towards the applications of chitosan nanoparticles stabilized Pickering emulsion in the realm of aquaculture. Carbohydr Polym 265:118096. https://doi.org/10.1016/j.carbpol.2021.118096

    Article  CAS  PubMed  Google Scholar 

  33. Mi FL, Sung HW, Shyu SS (2000) Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J Polym Sci A Polym 38:2804–2814. https://doi.org/10.1002/1099-0518(20000801)38:15%3c2804::aid-pola210%3e3.0.co;2-y

    Article  CAS  Google Scholar 

  34. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/s1381-5148(00)00038-9

    Article  Google Scholar 

  35. Fan K, Wang X, Yu S, Han G, Xu D, Zhou L, Song J (2019) A chitosan-based fluorescent hydrogel for selective detection of Fe2+ ions in gel-to-sol mode and turn-off fluorescence mode. Polym Chem 10:5037–5043. https://doi.org/10.1039/C9PY01179J

    Article  CAS  Google Scholar 

  36. Geng Z, Zhang H, Xiong Q, Zhao H, Wang G (2015) A fluorescent chitosan hydrogel detection platform for sensitive and selective determination of trace mercury(II) in water. J Mater Chem 3:19455–19460. https://doi.org/10.1039/C5TA05610A

    Article  CAS  Google Scholar 

  37. Pournaki M, Fallah A, Gülcan HO, Gazi M (2021) A novel chitosan based fluorescence chemosensor for selective detection of Fe(III) ion in acetic aqueous medium. Mater Technol 36:91–96. https://doi.org/10.1080/10667857.2020.1730565

    Article  Google Scholar 

  38. Colfen H, Harding SE, Varum KM (1996) Investigation, using analytical ultracentrifugation, of the effect of the incorporation of the fluorophore 9-anthraldehyde on two chitosans of differing degrees of acetylation. Carbohydr Polym 30:55–60

    Article  Google Scholar 

  39. Maity S, Parshi N, Prodhan C, Chaudhuri K, Ganguly J (2018) Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace Fe3+ and Fe2+ in water for live cell imaging. Carbohydr Polym 193:119–128. https://doi.org/10.1016/j.carbpol.2018.03.073

    Article  CAS  PubMed  Google Scholar 

  40. Maity S, Datta A, Lahiri S, Ganguly J (2015) Selective separation of 152Eu from a mixture of 152Eu and 137Cs using chitosan based hydrogel. RSC Adv 5:89338–89345. https://doi.org/10.1039/C5RA14976B

    Article  CAS  Google Scholar 

  41. Sabbagh HAK, Abudayeh Z, Abudoleh SM, Alkrad JA, Hussein MZ, Hussein-Al-Ali SH (2019) Application of multiple regression analysis in optimization of metronidazole-chitosan nanoparticles. J Polym Res 26:205–218. https://doi.org/10.1007/s10965-019-1854-x

    Article  CAS  Google Scholar 

  42. Zeng Y, Liang D, Zheng P, Zhang Y, Wang Z, Mari GM, Jiang H (2021) A simple and rapid immunochromatography test based on readily available filter paper modified with chitosan to screen for 13 sulfonamides in milk. J Dairy Sci 104:126–133. https://doi.org/10.3168/jds.2020-18987

    Article  CAS  PubMed  Google Scholar 

  43. Khan A, Othman MBH, Chang BP, Akil HM (2015) Preparation, physicochemical and stability studies of chitosan-PNIPAM based responsive microgels under various pH and temperature conditions. Iran Polym J 24:317–328. https://doi.org/10.1007/s13726-015-0324-5

    Article  CAS  Google Scholar 

  44. Kumar S, Nigam N, Ghosh T, Dutta PK, Yadav RS, Pandey AC (2010) Preparation, characterization, and optical properties of a chitosan–anthraldehyde crosslinkable film. J Appl Polym Sci 115:3056–3062. https://doi.org/10.1002/app.31385

    Article  CAS  Google Scholar 

  45. Lu S, Gao C, Xu X, Bai X, Duan H, Gao N, Feng C, Xiong Y, Liu M (2015) An injectable and self-healing carbohydrate based hydrogel for cell encapsulation. ACS Appl Mater Interfaces 7:13029–13037. https://doi.org/10.1021/acsami.5b03143

    Article  CAS  PubMed  Google Scholar 

  46. Jones RN (1947) The Ultraviolet absorption spectra of anthracene derivatives. Chem Rev 41:353–371. https://doi.org/10.1021/cr60129a013

    Article  CAS  PubMed  Google Scholar 

  47. Berezin YM, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684. https://doi.org/10.1021/cr900343z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kalayarasan G, Joseph J, Kumar P (2020) Phosphorus-doped carbon quantum dots as fluorometric probes for iron detection. ACS Omega 5:22278–22288. https://doi.org/10.1021/acsomega.0c02627

    Article  CAS  Google Scholar 

  49. Du J, Hsieh YL (2007) PEGylation of chitosan for improved solubility and fiber formation via electrospinning. Cellulose 14:543–552. https://doi.org/10.1007/s10570-007-9122-3

    Article  CAS  Google Scholar 

  50. Zhu X, Zhang Z, Xue Z, Huang C, Shan Y, Liu C, Qin X, Yang W, Chen X, Wang T (2017) Understanding the selective detection of Fe3+ based on graphene quantum dots as fluorescent probes: the Ksp of a metal hydroxide-assisted mechanism. Anal Chem 89:12054–12058. https://doi.org/10.1021/acs.analchem.7b02499

    Article  CAS  PubMed  Google Scholar 

  51. Guo Y, Li J, Chai S, Yao J (2017) Nanomaterials for the optical detection of fluoride. Nanoscale 9:17667–17680. https://doi.org/10.1039/C7NR05981G

    Article  CAS  PubMed  Google Scholar 

  52. Shangguan J, Huang J, He D, He X, Wang K, Ye R, Yang X, Qing T, Tang J (2017) Highly Fe3+-selective fluorescent nanoprobe based on ultra-bright N/P co-doped carbon dots and its application in biological samples. Anal Chem 89:7477–7484. https://doi.org/10.1021/acs.analchem.7b01053

    Article  CAS  PubMed  Google Scholar 

  53. Rana PJS, Singh P, Kar P (2016) Carbon nanoparticles for ferric ion detection and novel HFCNs-Fe3+ composite for NH3 and F estimation based on “turn on” mechanism. J Mater Chem B 4:5929–5937. https://doi.org/10.1039/C6TB00975A

    Article  CAS  Google Scholar 

  54. Basu A, Suryawanshi A, Kumawat B, Dandia A, Guin D, Ogale SB (2015) Starch (Tapioca) to carbon dots: an efficient green approach to on-off-on photoluminescence probe for fluoride ion sensing. Analyst 140:1837–1841. https://doi.org/10.1039/C4AN02340D

    Article  CAS  PubMed  Google Scholar 

  55. Raj D, Shaji E (2017) Fluoride contamination in groundwater resources of Alleppey, southern India. Geosci Front 8:117–124. https://doi.org/10.1016/j.gsf.2016.01.002

    Article  CAS  Google Scholar 

  56. Spolaor A, Vallelonga P, Gabrieli J, Cozzi G, Boutron C, Barbante C (2012) Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples. J Anal At Spectrom 27:310–317. https://doi.org/10.1039/c1ja10276a

    Article  CAS  Google Scholar 

  57. Sil A, Ijeri VS, Srivastava AK (2005) Coated-wire iron(III) ion-selective electrode based on iron complex of 1,4,8,11-tetraazacyclotetradecane. Sens Actuators B Chem 106:648–653. https://doi.org/10.1016/j.snb.2004.09.013

    Article  CAS  Google Scholar 

  58. Kage S, Kudo K, Nishida N, Ikeda H, Yoshioka N, Ikeda N (2008) Determination of fluoride in human whole blood and urine by gas chromatography-mass spectrometry. Forensic Toxicol 26:23–26. https://doi.org/10.1007/s11419-008-0043-0

    Article  CAS  Google Scholar 

  59. Kalita AC, Murugavel R (2014) Fluoride ion sensing and caging by a preformed molecular D4R zinc phosphate heterocubane. Inorg Chem 53:3345–3353. https://doi.org/10.1021/ic500193n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledged CSIR (no: 02(0331)/17/EMR-II dated 8.11.2017) and DST (Project no. EMR/2017/000963) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranesh Chowdhury.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, S.K., Roy, D., Pal, S. et al. Synthesis of novel water-soluble chitosan-based “off–on” fluorescent probes for successive recognitions of Fe3+ and F ions. Iran Polym J 31, 425–439 (2022). https://doi.org/10.1007/s13726-021-01013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-01013-9

Keywords

Navigation