Skip to main content
Log in

Chitosan/sodium alginate hybrid membranes modified by zeolitic imidazolate framework-90 for pervaporative dehydration of butanol

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Biobutanol is one of the promising biofuels, which is produced by fermentation. The concentration of butanol in the fermentation broth does not usually reach 2% (by wt). To use biobutanol as fuel, it is necessary to purify this mixture. In this study, chitosan and sodium alginate hybrid membranes filled with zeolitic imidazolate framework-90 (ZIF-90) were synthesized and utilized for butanol dehydration by the pervaporation process. The synthesized pristine and hybrid membranes were characterized by SEM, FTIR, TGA and contact angle. The swelling resistance of the membrane was determined by sorption tests. Hybrid membranes display higher thermal and mechanical stability and swelling resistance compared to pristine membranes. The separation performance of membranes was determined through pervaporation process. The effects of ZIF loading ratio, process temperature and feed concentration on separation performance were investigated. Compared to pristine membranes, hybrid membranes were found to be more effective for dehydration of butanol by pervaporation. Among hybrid membranes, sodium alginate hybrid membranes filled with ZIF-90 displayed the best separation performance. While the highest flux and separation factor values of 0.987 kg/m2h and 1978 were obtained using sodium alginate hybrid membrane, the flux value of 0.325 kg/m2h and the separation factor value of 1124 were achieved in chitosan hybrid membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

α:

Separation factor

F a, F b :

Mass fraction of a and b components in the feed

J:

Flux (kg/m2h)

m:

Permeate weight (g)

P a, P b :

Mass fraction of a and b components in the permeate

A :

Effective membrane area (m2)

t :

Time (h)

w s :

Weight of a swollen membrane (g)

w d :

Weight of a dried membrane (g)

CH:

Chitosan

HEC:

Hydroxyethylcellulose

SA:

Sodium alginate

PVA:

Poly(vinyl alcohol)

PBI:

Polybenzimidazole

PEI:

Polyetherimide

References

  1. Rdzanek P, Marszałek J, Kamiński W (2018) Biobutanol concentration by pervaporation using supported ionic liquid membranes. Sep Purif Technol 196:124–131

    Article  CAS  Google Scholar 

  2. Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin PY (2013) Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresour Technol 145:97–102

    Article  CAS  Google Scholar 

  3. Lin YF, Wu CY, Liu TY, Lin KYA, Tung KL, Chung TW (2018) Synthesis of mesoporous SiO2xerogel/chitosan mixed-matrix membranes for butanol dehydration. J Ind Eng Chem 57:297–303

    Article  CAS  Google Scholar 

  4. Liu S, Liu G, Zhao X, Jin W (2013) Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. J Membr Sci 446:181–188

    Article  CAS  Google Scholar 

  5. Dharupaneedi SP, Anjanapura RV, Han J, Aminabhavi TM (2014) Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res 53:14474–14484

    Article  CAS  Google Scholar 

  6. Ye H, Yan X, Zhang X (2017) Pervaporation properties of oleyl alcohol-filled polydimethylsiloxane membranes for the recovery of phenol from wastewater. Iran Polym J 26:639–649

    Article  CAS  Google Scholar 

  7. Jafarinasab M, Barzin J, Mortaheb HR (2015) Structure and performance characterization of PDMS/PES-based pervaporation membranes for ethanol/water separation. Iran Polym J 24:989–1002

    Article  CAS  Google Scholar 

  8. Ye H, Zhang X, Zhao Z (2017) Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water. Iran Polym J 26:193–203

    Article  CAS  Google Scholar 

  9. Wu JK, Yin MJ, Han W, Wang N, An QF (2020) Development of high-performance polyelectrolyte-complex-nanoparticle-based pervaporation membranes via convenient tailoring of charged groups. J Mater Sci 55:2607–12620

    Google Scholar 

  10. Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique. RSC Adv 3:17120

    Article  CAS  Google Scholar 

  11. Rehm BHA (2009) Alginates: biology and applications. Springer Verlag, Berlin

    Book  Google Scholar 

  12. Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV (2015) Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv 5:100984–100995

    Article  CAS  Google Scholar 

  13. Xu YM, Chung TS (2017) High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. J Membr Sci 531:16–26

    Article  CAS  Google Scholar 

  14. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, OKeeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103:10186–10191

    Article  CAS  Google Scholar 

  15. Wei Z, Liu Q, Wu C, Wang H, Wang H (2018) Viscosity-driven in situ self-assembly strategy to fabricate cross-linked ZIF-90/PVA hybrid membranes for ethanol dehydration via pervaporation. Sep Purif Technol 201:256–267

    Article  CAS  Google Scholar 

  16. Unlu D, Hilmioglu ND (2014) Pervaporation catalytic membrane reactor study for the production of ethyl acetate using Zr(SO4)2.4H2O coated chitosan membrane. J Chem Technol Biot 91:122–130

    Article  Google Scholar 

  17. Devi DA, Smitha B, Sridhar S, Jawalkar SS, Aminabhavi TM (2007) Novel sodium alginate/polyethyleneimine polyion complex membranes for pervaporation dehydration at theazeotropic composition of various alcohols. J Chem Technol Biot 82:993–1003

    Article  CAS  Google Scholar 

  18. Huang RY, Pal R, Moon G (2000) Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane. J Membr Sci 167:275–289

    Article  CAS  Google Scholar 

  19. Song Y, Wang N, Yang LY, Wang YG, Yu D, Ouyang X (2019) Facile fabrication of ZIF-8/calcium alginate microparticles for highly efficient adsorption of Pb(II) from aqueous solutions. Ind Eng Chem Res 58:6394–6401

    Article  CAS  Google Scholar 

  20. Liu G, Jiang Z, Cao K, Nair S, Cheng X, Zhao J, Pan F (2017) Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J Membr Sci 523:185–196

    Article  CAS  Google Scholar 

  21. Fazlifard S, Mohammadi T, Bakhtiari O (2017) Chitosan/ZIF-8 mixed-matrix membranes for pervaporation dehydration of isopropanol. Chem Eng Technol 40:648–655

    Article  CAS  Google Scholar 

  22. Achari D, Rachipudi P, Naik S, Karuppannan R, Kariduraganavar M (2019) Polyelectrolyte complex membranes made of chitosan-PSSAMA for pervaporation separation of industrially important azeotropic mixtures. J Ind Eng Chem 78:383–395

    Article  CAS  Google Scholar 

  23. Choudhari SK, Premakshi HG, Kariduraganavar MY (2016) Preparation and pervaporation performance of chitosan-poly(methacrylic acid) polyelectrolyte complex membranes for dehydration of 1,4-dioxane. Polym Eng Sci 56:715–724

    Article  CAS  Google Scholar 

  24. Kang CH, Lin YF, Huang YS, Tung KL, Chang KS, Chen JT, Lai JY (2013) Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures. J Membr Sci 438:105–111

    Article  CAS  Google Scholar 

  25. Zhao J, Wang F, Pan F, Zhang M, Yang X, Li P, Wang B (2013) Enhanced pervaporation dehydration performance of ultrathin hybrid membrane by incorporating bioinspired multifunctional modifier and TiCl4 into chitosan. J Membr Sci 446:395–404

    Article  CAS  Google Scholar 

  26. Kanti P, Srigowri K, Madhuri J, Smitha B, Sridhar S (2004) Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Sep Purif Technol 40:259–266

    Article  CAS  Google Scholar 

  27. Suhas DP, Aminabhavi TM, Raghu AV (2014) para-Toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429

    Article  CAS  Google Scholar 

  28. Moon GY, Pal R, Huang RY (1999) Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol. J Membr Sci 156:17–27

    Article  Google Scholar 

  29. Arif Z, Sethy NK, Mishra PK, Upadhayay SN, Verma B (2017) Investigating the influence of sol gel derived PVA/SiO2 nano composite membrane on pervaporation separation of azeotropic mixture: I. Effect of operating condition. J Porous Mater 25:1203–1211

    Article  Google Scholar 

  30. Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B (2017) Metal-organic frameworks based membranes for liquid separation. Chem Soc Rev 46:7124–7144

    Article  CAS  Google Scholar 

  31. Gao R, Zhang Q, Lv R, Soyekwo F, Zhu A, Liu Q (2017) Highly efficient polymer-MOF nanocomposite membrane for pervaporation separation of water/methanol/MTBE ternary mixture. Chem Eng Res Des 117:688–697

    Article  CAS  Google Scholar 

  32. Zhang S, Zou Y, Wei T, Mu C, Liu X, Tong Z (2017) Pervaporation dehydration of binary and ternary mixtures of n-butyl acetate, n-butanol and water using PVA-CS blended membranes. Sep Purif Technol 173:314–322

    Article  CAS  Google Scholar 

  33. Guo WF, Chung TS, Matsuura T (2004) Pervaporation study on the dehydration of aqueous butanol solutions: a comparison of flux vs. permeance, separation factor vs. selectivity. J Membr Sci 245:199–210

    Article  CAS  Google Scholar 

  34. Kittur AA, Jeevankumar BK, Kariduraganavar MY, College SDM (2013) Pervaporation separation of water-dioxane mixtures through poly (vinyl alcohol)-silicone based hybrid membranes. Int J Curr Eng Technol 1:148–156

    Google Scholar 

  35. Jalal TA, Bettahalli NMS, Le NL, Nunes SP (2015) Hydrophobic HyflonAD/poly(vinylidene fluoride) membranes for butanol dehydration via pervaporation. Ind Eng Chem Res 54:11180–11187

    Article  CAS  Google Scholar 

  36. Tsou CH, An QF, Lo SC, Guzman MD, Hung WS, Hu CC, Lai JY (2015) Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J Membr Sci 477:93–100

    Article  CAS  Google Scholar 

  37. Zhang W, Li G, Fang Y, Wang X (2007) Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance. J Membr Sci 295:130–138

    Article  CAS  Google Scholar 

  38. Lin YF, Wu CY, Liu TY, Lin KYA, Tung KL, Chung TW (2018) Synthesis of mesoporous SiO2 xerogel/chitosan mixed-matrix membranes for butanol dehydration. J Ind Eng Chem 57:297–303

    Article  CAS  Google Scholar 

  39. Shi GM, Yang T, Chung TS (2012) Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. J Membr Sci 415–416:577–586

    Article  Google Scholar 

  40. Dong YQ, Zhang L, Shen JN, Song MY, Chen HL (2006) Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination 193:202–210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to Bursa Technical University Scientific Research Projects Unit (Project No. 182N04) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Unlu.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unlu, D. Chitosan/sodium alginate hybrid membranes modified by zeolitic imidazolate framework-90 for pervaporative dehydration of butanol. Iran Polym J 30, 1239–1249 (2021). https://doi.org/10.1007/s13726-021-00970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00970-5

Keywords

Navigation