Skip to main content
Log in

Static and dynamic mechanical properties of nanosilica and multiwalled carbon nanotube reinforced acrylonitrile butadiene styrene composites: theoretical mechanism of nanofiller reinforcement

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Experimental and theoretical approaches were employed to analyze the static and dynamic mechanical properties of acrylonitrile butadiene styrene (ABS) nanocomposites reinforced with multiwalled carbon nanotube (MWCNT) and nanosilica. Enhanced stiffness and tensile strength were observed for composites with 5% (wt) CNT and 3% (wt) nanosilica. Micromechanical models were highly promising to predict the experimental Young’s modulus by 2% (wt) of nanofiller content, beyond which it deviated due to the nanofiller population and the reduction in interparticle distance. At the optimum content of 5% (wt) MWCNTs in the ABS matrix, enhanced storage and loss moduli and lowered damping peak were observed, which was attributed to the immobilization of the segmental polymer chains. From the DMA parameters, the dynamics of the polymer chain were investigated and the fraction of constrained regions and entanglement density were quantified. These findings demonstrated that composite with higher constrained regions and entanglements exhibited superior mechanical performance. Amongst all composites, 5% (wt) MWCNT-reinforced ABS composite showed an increment in reinforcing efficiency, entanglement density, and constrained regions by 195.6%, 115% and 55.5%, respectively, with regard to 3% (wt) nanosilica-reinforced ABS composite. The effectiveness of dispersion and interfacial adhesion of CNTs with ABS was improved by carboxyl treatment and functionalization with ABS-g-MaH compatibilizer with regard to silane-treated nanosilica/ABS composites. Combined analysis of microstructure, tensile properties and dynamic mechanical parameters such as entanglement density, effectiveness of filler, constrained volume of polymer chains and adhesion factor demonstrated the effectiveness of high aspect ratio carboxyl-treated MWCNTs as a better reinforcing agent in comparison with nanosilica in ABS matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data are also part of an ongoing study. We are pleased to share the data with the editor or reviewers at every step of the review process.

References

  1. Al-Saleh MH, Al-Saidi BA, Al-Zoubi RM (2016) Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile-styrene-butadiene nanocomposites. Polymer 89:12–17

    Article  CAS  Google Scholar 

  2. Kapoor S, Goyal M, Jindal P (2019) Enhanced thermal, static, and dynamic mechanical properties of multi-walled carbon nanotubes-reinforced acrylonitrile butadiene styrene nanocomposite. J Thermoplast Compos Mater 7:0892705719886012

    Google Scholar 

  3. Díez-Pascual AM, Gascon D (2013) Carbon nanotube buckypaper reinforced acrylonitrile-butadiene-styrene composites for electronic applications. ACS Appl Mater Interfaces 5:12107–12119

    Article  PubMed  CAS  Google Scholar 

  4. Shrivastava NK, Suin S, Maiti S, Khatua BB (2014) An approach to reduce the percolation threshold of MWCNT in ABS/MWCNT nanocomposites through selective distribution of CNT in ABS matrix. RSC Adv 4:24584–24593

    Article  CAS  Google Scholar 

  5. Liao YJ, Wu XL, Zhu L, Yi T (2018) Synthesis and properties of novel styrene acrylonitrile/polypropylene blends with enhanced toughness. Chem Cent J 12:78–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang S, Schmalz H, Agarwal S, Greiner A (2020) Electrospinning of ABS nanofibers and their high filtration performance. Adv Fiber Mater 2:34–43

    Article  Google Scholar 

  7. Chen S, Lu J, Feng J (2018) 3D-Printable ABS blends with improved scratch resistance and balanced mechanical performance. Ind Eng Chem Res 57:3923–3931

    Article  CAS  Google Scholar 

  8. Deng SQ, Liu Q, Bao X, Cai XF (2015) Toughening and compatibilization of acrylonitrile-butadiene-styrene/poly (ethylene terephthalate) blends using an oxazoline-functionalized impact modifier. Polym Plast Technol Eng 54:1184–1192

    Article  CAS  Google Scholar 

  9. Singh R, Kumar R, Farina I, Colangelo F, Feo L, Fraternali F (2019) Multi-material additive manufacturing of sustainable innovative materials and structures. Polymers 11:62

    Article  PubMed Central  CAS  Google Scholar 

  10. Singh R, Sandhu GS, Penna R, Farina I (2017) Investigations for thermal and electrical conductivity of ABS-graphene blended prototypes. Materials 10:881

    Article  PubMed Central  CAS  Google Scholar 

  11. de León AS, Domínguez-Calvo A, Molina SI (2019) Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF). Mater Des 182:108044

    Article  CAS  Google Scholar 

  12. Jyoti J, Kumar A, Dhakate SR, Singh BP (2018) Dielectric and impedance properties of three dimension graphene oxide-carbon nanotube acrylonitrile butadiene styrene hybrid composites. Polym Test 68:456–466

    Article  CAS  Google Scholar 

  13. Park KS, Youn JR (2012) Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composites. Carbon 50:2322–2330

    Article  CAS  Google Scholar 

  14. Dul S, Pegoretti A, Fambri L (2018) Effects of the nanofillers on physical properties of acrylonitrile-butadiene-styrene nanocomposites: comparison of graphene nanoplatelets and multiwall carbon nanotubes. Nanomaterials 8:674

    Article  PubMed Central  CAS  Google Scholar 

  15. Ismail NHC, Akil HM (2019) ABS/Nonexpandable muscovite clay nanocomposites: The effect of ion exchange on dispersion of nanofillers and flexural properties. Polym Compos 40:3562–3572

    Article  CAS  Google Scholar 

  16. Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69:1756–1763

    Article  CAS  Google Scholar 

  17. Šupová M, Martynková GS, Barabaszová K (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3:1–25

    Article  CAS  Google Scholar 

  18. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen XR, Ruoff RS, Nguyen ST (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  PubMed  Google Scholar 

  19. Jo MY, Ryu YJ, Ko JH, Yoon JS (2012) Effects of compatibilizers on the mechanical properties of ABS/PLA composites. J Appl Polym Sci 125:E231–E238

    Article  CAS  Google Scholar 

  20. Lai SM, Liao YC, Chen TW (2005) The preparation and properties of compatibilized nylon 6/ABS blends using functionalized polybutadiene. Part I: impact properties. Polym Eng Sci 45:1461–1470

    Article  CAS  Google Scholar 

  21. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1162–1173

    Article  CAS  Google Scholar 

  22. Dorigato AY, Dzenis Y, Pegoretti A (2013) Filler aggregation as a reinforcement mechanism in polymer nanocomposites. Mech Mater 61:79–90

    Article  Google Scholar 

  23. Bréchet Y, Cavaillé JY, Chabert E, Chazeau L, Dendievel R, Flandin L, Gauthier C (2001) Polymer based nanocomposites: effect of filler-filler and filler matrix interactions. Adv Eng Mater 3:571–577

    Article  Google Scholar 

  24. George SC, Thomas S (2018) Static and dynamic mechanical characteristics of ionic liquid modified MWCNT-SBR composites: theoretical perspectives for the nanoscale reinforcement mechanism. J Phys Chem B 122:1525–1536

    Article  PubMed  CAS  Google Scholar 

  25. Kyratsis P, Tzetzis D (2018) Investigation of the mechanical properties of acrylonitrile butadiene styrene (ABS)-nanosilica reinforced nanocomposites for fused filament fabrication 3D printing. IOP Conf Ser Mater Sci Eng 416:012086

    Article  Google Scholar 

  26. Karatrantos A, Clarke N, Composto RJ, Winey KI (2016) Entanglements in polymer nanocomposites containing spherical nanoparticles. Soft Matter 12:2567–2574

    Article  CAS  PubMed  Google Scholar 

  27. Jouault N, Dalmas F, Boué F, Jestin J (2012) Multiscale characterization of filler dispersion and origins of mechanical reinforcement in model nanocomposites. Polymer 53:761–775

    Article  CAS  Google Scholar 

  28. Li Y, Kröger M, Liu WK (2012) Nanoparticle geometrical effect on structure, dynamics and anisotropic viscosity of polyethylene nanocomposites. Macromolecules 45:2099–2112

    Article  CAS  Google Scholar 

  29. Karatrantos A, Clarke N, Composto RJ, Winey KI (2013) Topological entanglement length in polymer melts and nanocomposites by a DPD polymer model. Soft Matter 9:3877–3884

    Article  CAS  Google Scholar 

  30. Karatrantos A, Composto RJ, Winey KI, Clarke N (2012) Primitive path network, structure and dynamics of SWCNT/polymer nanocomposites. Mater Sci Eng 40:012027

    Google Scholar 

  31. Chauhan SS, Singh BP, Malik RS, Verma P, Choudhary V (2018) Detailed dynamic mechanical analysis of thermos-mechanically stable melt-processed PEK-MWCNT nanocomposites. Polym Compos 39:2587–2596

    Article  CAS  Google Scholar 

  32. Joy J, George E, Thomas S, Anas S (2020) Effect of filler loading on polymer chain confinement and thermomechanical properties of epoxy/boron nitride (h-BN) nanocomposites. New J Chem 44:4494–4503

    Article  CAS  Google Scholar 

  33. BinduP TS (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117:12632–12648

    Article  CAS  Google Scholar 

  34. Mngomezulu ME, Luyt AS, John MJ (2019) Morphology, thermal and dynamic mechanical properties of poly (lactic acid)/expandable graphite (PLA/EG) flame retardant composites. J Thermoplast Compos Mater 32:89–107

    Article  CAS  Google Scholar 

  35. Ning N, Fu S, Zhang W, Chen F, Wang K, Deng H, Fu Q (2012) Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci 37:1425–1455

    Article  CAS  Google Scholar 

  36. Manikkoth ST, Thulasi KM, Paravannoor A, Palantavida S, Bhagiyalakshmi M, Vijayan BK (2020) Designing micro/nano hybrid TNT@ α-Fe2O3 composites for high performance supercapacitors. Nano Struct Nano Objects 24:100543

    Article  CAS  Google Scholar 

  37. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Nazari MA, Ghalandari M (2019) Utilization of hybrid nanofluids in solar energy applications: a review. Nano-Struct Nano-Objects 20:100386

    Article  Google Scholar 

  38. Sarkar N, Sahoo G, Swain SK (2020) Nanoclay sandwiched reduced graphene oxide filled macroporous polyacrylamide-agar hybrid hydrogel as an adsorbent for dye decontamination. Nano-Struct Nano-Objects 23:100507

    Article  CAS  Google Scholar 

  39. RamezanpourS SI, Khatamian M (2018) Constructing Mn3O4/Cu hybrid nanorods as superior photocatalyst. Nano-Struct Nano-Objects 16:396–402

    Article  CAS  Google Scholar 

  40. MoghimiMonfared R, Ayatollahi MR, BarbazIsfahani R (2018) Synergistic effects of hybrid MWCNT/nanosilica on the tensile and tribological properties of woven carbon fabric epoxy composites. Theor Appl Fract 96:272–284

    Article  CAS  Google Scholar 

  41. Rasana N, Jayanarayanan K, Ramachandran KI (2020) Experimental, analytical and finite element studies on nano(MWCNT) and hybrid (MWCNT/glass fiber) filler reinforced polypropylene composites. Iran Polym J 29:1071–1085

    Article  CAS  Google Scholar 

  42. Jose JP, Thomas S (2014) Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties. Phys Chem Chem Phys 16:14730–14740

    Article  CAS  PubMed  Google Scholar 

  43. Song SH (2020) Graphene-silica hybrids fillers for multifunctional solution styrene butadiene rubber. J Polym Res 27:1–9

    Article  CAS  Google Scholar 

  44. Navidfar A, Baytak T, Bulut O, Trabzon L (2020) Synergically enhanced viscoelastic behavior of binary nanocarbon based polyurethane hybrid nanocomposite foams. arXiv Preprint arXiv 2006:13363

  45. Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninckx G, Thomas S (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53:1624–1638

    Article  CAS  Google Scholar 

  46. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72

    Article  Google Scholar 

  47. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652

    Article  CAS  Google Scholar 

  48. Lee KY, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Article  CAS  Google Scholar 

  49. Taha I, Abdin YF (2011) Modeling of strength and stiffness of short randomly oriented glass fiber-polypropylene composites. J Compos Mater 45:1805–1821

    Article  CAS  Google Scholar 

  50. Gao XL, Li KA (2005) Shear-lag model for carbon nanotube-reinforced polymer composites. Int J Solids Struct 42:1649–1667

    Article  Google Scholar 

  51. Zare Y (2015) Assumption of interphase properties in classical Christensen-Lo model for Young’s modulus of polymer nanocomposites reinforced with spherical nanoparticles. RSC Adv 5:95532–95538

    Article  CAS  Google Scholar 

  52. Jayanarayanan K, Rasana N, Mishra RK (2017) Dynamic mechanical thermal analysis of polymer nanocomposites. Therm Rheol MeasureTech Nanomater Charac 2017:123–157

    Google Scholar 

  53. Pandey AK, Kumar R, Kachhavah VS, Kar KK (2016) Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile-butadiene-styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:50559–50571

    Article  CAS  Google Scholar 

  54. Jyoti J, Singh BP, Arya AK, Dhakate SR (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:3997–4006

    Article  CAS  Google Scholar 

  55. Bee S, Lim K, Sin LT, Ratnam CT, Bee SL, Rahmat AR (2018) Interactive effect of ammonium polyphosphate and montmorillonite on enhancing flame retardancy of polycarbonate/acrylonitrile butadiene styrene composites. Iran Polym J 27:899–911

    Article  CAS  Google Scholar 

  56. Romanzini D, Lavoratti A, Ornaghi HL Jr, Amico SC, Zattera AJ (2013) Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater Des 47:9–15

    Article  CAS  Google Scholar 

  57. Balakrishnan P, Sreekala MS, Kunaver M, Huskić M, Thomas S (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym 169:176–188

    Article  CAS  PubMed  Google Scholar 

  58. Kim IJ, Kwon OS, Park JB, Joo H (2006) Synthesis and characterization of ABS/silica hybrid nanocomposites. Curr Appl Phys 6:e43–e47

    Article  Google Scholar 

  59. Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Manchado ML, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43:1499–1505

    Article  CAS  Google Scholar 

  61. Rasana N, Jayanarayanan K, Pavithra R, Nandhini GR, Ramya P, Veeraraagavan AV (2019) Mechanical and thermal properties modeling, sorption characteristics of multiscale (multiwalled carbon nanotubes/glass fiber) filler reinforced polypropylene composites. J Vinyl Addit Technol 25:E94–E107

    Article  CAS  Google Scholar 

  62. Bhattacharya M (2016) Polymer nanocomposites: a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9:262

    Article  PubMed Central  CAS  Google Scholar 

  63. Lin Y, Liu S, Peng J, Liu L (2016) The filler-rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: a quantitative correlation with the constrained region. Compos Part A Appl Sci Manuf 86:19–30

    Article  CAS  Google Scholar 

  64. Jesuarockiam N, Jawaid M, Zainudin ES, Thariq Hameed Sultan M, Yahaya R (2019) Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers 11:1085

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Testing and Instrumentation Centre (STIC), Kochi, India for TEM analysis. The authors are grateful to Centre of excellence in Advanced Materials and Green Technologies (CoE-AMGT) Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India for SEM analysis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanoth Rasana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasana, N., Jayanarayanan, K., Mohan, H.T. et al. Static and dynamic mechanical properties of nanosilica and multiwalled carbon nanotube reinforced acrylonitrile butadiene styrene composites: theoretical mechanism of nanofiller reinforcement. Iran Polym J 30, 1211–1225 (2021). https://doi.org/10.1007/s13726-021-00962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00962-5

Keywords

Navigation