Skip to main content
Log in

Improving proton conductivity of poly(oxyphenylene benzimidazole) membranes with sulfonation and magnetite addition

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Flexible membranes of poly(oxyphenylene benzimidazole) (PBIO) polymer with oxygen in the main chain were prepared. Proton conductivity was improved by sulfonation and adding magnetite to the PBIO membrane. A hydrophilic PBIO polymer/polyvinylidene difluoride (PVDF) mixture was used to prepare the membrane. DMF/acetone solvent pair was used to obtain homogeneous solutions of these two polymers. By modifying the PBIO with sulfuric acid, the PBIO membrane and PBIOsm composite membrane were obtained through sulfuric acid modification as well as the addition of magnetite. The structures of the obtained cast PBIO membranes were illuminated by FTIR, TGA, SEM, and EDX analyses. According to XRD analysis, the crystallization percentages of PBIO, PBIOs, and PBIOsm were compared and a synergistic effect of the degree of crystallization on the ability of the ion exchange was observed. The highest degree of crystallinity was determined at 79% for PBIOsm. Upon the addition of magnetite, the water-holding capacity and proton conductivity of the PBIO membranes increased. The proton conductivity values were measured at 90, 120, and 140 °C. The proton conductivity was found to be higher in the sulfonated PBIOs and sulfonated-magnetite doped membranes. The highest proton conductivity of 36.78 mS/cm was obtained from the combination of sulfuric acid and PBIOsm composite membrane. The proton conductivity of the PBIO membrane was measured to be 36.61 mS/cm.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang CY, Zhou YP, Shen B, Zhao XY, Li J, Ren Q (2018) Proton-conducting poly(ether sulfone ketone)s containing a high density of pendant sulfonic groups by a convenient and mild post-sulfonation. Polym Chem 9:4984–4993

    Article  CAS  Google Scholar 

  2. Baroutaji A, Carton JG, Sajjia M, Olabi, AG (2016) Materials in PEM fuel cells. In: Reference module in materials science and materials engineering, Elsevier B.V. https://doi.org/10.1016/B978-0-12-803581-8.04006-6   

  3. Zaidi SMJ (2009) Research trends in polymer electrolyte membranes for PEMFC. In: Zaidi SMJ, Matsuura T (eds) Polymer membranes for fuel cells. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73532-0_2

    Chapter  Google Scholar 

  4. Qian G, Benicewicz BC (2009) Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. J Polym Sci Part A Polym Chem 47:4064–4073

    Article  CAS  Google Scholar 

  5. Yu S, Zhang H, Xiao L, Choe EW, Benicewicz BC (2009) Synthesis of poly(2,2′-(1,4-phenylene)5,5′-bibenzimidazole)(para-PBI) and phosphoric acid doped membrane for fuel cells. Fuel Cells 9:318–324

    Article  CAS  Google Scholar 

  6. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

    Article  CAS  Google Scholar 

  7. Kreuer K ( 2003) Hydrocarbon membranes In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells. Wiley, p 420

  8. Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water-uptake by and transport through nafion(R) 117 membranes. J Electrochem Soc 140:1041–1047

    Article  CAS  Google Scholar 

  9. Yang H, Lee D, Park S, Kim W (2013) Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC. J Membr Sci 443:210–218

    Article  CAS  Google Scholar 

  10. Gong CL, Zheng X, Liu H, Wang GJ, Cheng F, Zheng GW, Wen S, Law WC, Tsui CP, Tang CY (2016) A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes. J Power Sources 325:453–464

    Article  CAS  Google Scholar 

  11. Mishra AK, Kim NH, Jung D, Lee JH (2014) Enhanced mechanical properties and proton conductivity of Nafion-SPEEK-GO composite membranes for fuel cell applications. J Membr Sci 458:128–135

    Article  CAS  Google Scholar 

  12. Kim AR, Yoo DJ (2019) A comparative study on physiochemical, thermomechanical, and electrochemical properties of sulfonated poly(ether ether ketone) block copolymer membranes with and without Fe3O4nanoparticles. Polymers 536:1–15

    Google Scholar 

  13. Peckham TJ, Holdcroft S (2010) Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv Mater 22:4667–4690

    Article  CAS  PubMed  Google Scholar 

  14. Vallé K, Belleville P, Pereira F, Sanchez C (2006) Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer. Nat Mater 5:107–111

    Article  PubMed  CAS  Google Scholar 

  15. Grot WG, Rajendran G (1999) Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same. United States Patent, Patent Number: 5,919,583. https://patentimages.storage.googleapis.com/ee/d6/16/6b8d0fba3514b3/US5919583.pdf

  16. Jain M, Yadav M, Kohout T, Lahtinen M, Garg VK, Sillanpa M (2018) Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour Ind 20:54–74

    Article  Google Scholar 

  17. Yang CR (2003) Performance of Nafion/zirconium phosphate composite membranes in PEM fuel cells in Department of Mechanical Engineering. Princeton University, Princeton

    Google Scholar 

  18. Bauer F, Willert-Porada M (2005) Characterisation of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion(R) composite membranes prepared out of them. J Power Sources 145:101–107

    Article  CAS  Google Scholar 

  19. Costamagna P, Yang C, Bocarsly AB, Srinivasan S (2002) Nafion (R) 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C. Electrochim Acta 47:1023–1033

    Article  CAS  Google Scholar 

  20. Bauer F, Willert-Porada M (2004) Microstructural characterization of Zr-phosphate-Nafion((R)) membranes for direct methanol fuel cell (DMFC) applications. J Membr Sci 233:141–149

    Article  CAS  Google Scholar 

  21. Yadav M (2018) Study on thermal and mechanical properties of cellulose/iron oxide bionanocomposites film. Compos Commun 10:1–5

    Article  Google Scholar 

  22. Selvakumar K, Prabhu MR (2018) Investigation on meta-polybenzimidazole blend with sulfonated PVdF-HFP proton conducting polymer electrolytes for HT-PEM fuel cell application. J Mater Sci Mater Electron 29:15163–15173

    Article  CAS  Google Scholar 

  23. Xiao L, Zhang H, Scanlon E, Ramanathan LS, Choe EW, Rogers D, Apple T, Benicewicz BC (2005) High-temperature polybenzimidazole fuel cell membranes via a sol–gel process. Chem Mater 17:5328–5333

    Article  CAS  Google Scholar 

  24. Chen J, Wang L, Wang L (2020) Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal-organic framework (UIO-66). ACS Appl Mater Interfaces 12:41350–41358

    Article  CAS  PubMed  Google Scholar 

  25. Wan L, Xu Z, Wang P, Lin Y, Wang B (2020) H2SO4-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis. J Membr Sci 618:118642

    Article  CAS  Google Scholar 

  26. Hwang K, Kim JH, Kim SY, Byun H (2014) Preparation of polybenzimidazole-based membranes and their potential applications in the fuel cell system. Energies 7:1721–1732

    Article  CAS  Google Scholar 

  27. Raja RRS, Rashmi W, Khalid M, Wong WY, Priyanka J (2020) Recent progress in the development of aromatic polymer-based proton exchange membranes for fuel cell applications. Polymers 12:1061

    Article  CAS  Google Scholar 

  28. Ozaytekin I, Karatas I (2008) Synthesis and characterization of thermally stable polymers (polybenzimidazoles). J Appl Polym Sci 109:1861–1870

    Article  CAS  Google Scholar 

  29. Vogel H, Marvel CS (1961) Polybenzimidazoles, new thermally stable polymers. J Polym Sci 50:511–539

    Article  CAS  Google Scholar 

  30. Ozaytekin I, Dinc H, Oflaz K, Kaya T, Cakmaktepe S, Yilmaz E (2018) High-performance conducting polybenzimidazoles nanohybrids. Polym Compos 39:4372–4385

    Article  CAS  Google Scholar 

  31. Salarizadeh P, Javanbakht M, Askari MB, Hooshyari K, Moradi M, Beydaghi H, Rastgoo-Deylami M, Enhessari M (2021) Novel proton conducting core-shell PAMPS-PVBS@Fe2TiO5 nanoparticles as a reinforcement for SPEEK based membranes. Sci Rep 4926:1–14

    Google Scholar 

  32. Heimerdinger P, Rosin A, Danzer MA, Gerdes T (2019) A novel method for humidity-dependent through-plane impedance measurement for proton conducting polymer membranes. Membranes 9:62

    Article  PubMed Central  CAS  Google Scholar 

  33. Wang L, Zhang C, Gao F, Pan G (2016) Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. Rsc Adv 6:105988–105995

    Article  CAS  Google Scholar 

  34. Sengupta D, Kottapalli AGP, Chen SH, Miao JM, Kwok CY, Triantafyllou MS, Warkiani ME, Asadnia M (2017) Characterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applications. Aip Adv 7:105205

    Article  CAS  Google Scholar 

  35. Chu JY, Kim AR, Nahm KS, Lee KH, Yoo DJ (2013) Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units. Int J Hydrogen Eng 38:6268–6274

    Article  CAS  Google Scholar 

  36. Vinothkannan M, Kim AR, Gnana Kumar G, Yoon JM, Yoo DJ (2017) Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv 7:39034–39048

    Article  CAS  Google Scholar 

  37. Ouyang ZW, Chen EC, Wu TM (2015) Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nanocomposites. Materials 8:4553–4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chai JH, Wu QS (2013) Electrospinning preparation and electrical and biological properties of ferrocene/poly(vinylpyrrolidone) composite nanofibers. Beilstein J Nanotechnol 4:189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He R, Li Q, Jensen JO, Bjerrum NJ (2006) Physicochemical properties of phosphoric acid-doped polybenzimidazole membranes for fuel cells. J Membr Sci 277:38–45

    Article  CAS  Google Scholar 

  40. Wang L, Liu Z, Ni J, Xu M, Pan C, Wang D, Liu D, Wang L (2019) Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells. J Membr Sci 572:350–357

    Article  CAS  Google Scholar 

  41. Lobato J, Canizares P, Rodrigo MA, Linares JJ, Aguilar JA (2007) Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC. J Membr Sci 306:47–55

    Article  CAS  Google Scholar 

  42. Yang S, Ma W, Wang A, Gu J, Yin Y (2018) A core-shell structured polyacrylonitrile@poly(vinylidene flüoride-hexafluoro propylene) microfiber complex membrane as a separator by co-axial electrospinning. RSC Adv 8:23390–23396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ka'ki A, Alraeesi A, Al-Othman A, Tawalbeh M (2021) Proton conductivity studies on novel calcium phosphate-ionic liquids membranes for PEM fuel cells applications, Intl J Hydrogen Energy (in press). https://doi.org/10.1016/j.ijhydene.2021.01.013

    Article  Google Scholar 

  44. Kumar KS, Prabhu MR (2021) Enhancing proton conduction of poly (benzimidazole) with sulfonated titania nanocomposite membrane for PEM fuel cell applications. Macromol Res 29:111–119

    Article  CAS  Google Scholar 

  45. Kerres JA, Krieg HM (2017) Poly(vinylbenzylchloride) based anion-exchange blend membranes (AEBMs): influence of PEG additive on conductivity and stability. Membranes 7:1–24

    Article  CAS  Google Scholar 

  46. Umsarika P, Changkhamchom S, Paradee N, Sirivat A, Supaphol P, Hormnirun P (2017) Proton exchange membrane based on sulfonated poly (aromatic imide-co-aliphatic imide) for direct methanol fuel cell. Mater Res 21:1–8

    Article  CAS  Google Scholar 

  47. Cho H, Atanasov V, Krieg HM, Kerres JA (2020) Novel anion exchange membrane based on poly(pentafluorostyrene) substituted with mercaptotetrazole pendant groups and its blend with polybenzimidazole for vanadium redox flow battery applications. Polymers 12:915–929

    Article  CAS  PubMed Central  Google Scholar 

  48. Li S, Zhu X, Liu D, Sun F (2018) A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC. J Membr Sci 546:15–21

    Article  CAS  Google Scholar 

  49. Kim DJ, Jeong MK, Nam SY (2015) Research trends in ion exchange membrane processes and practical applications. Appl Chem Eng 26:1–16

    Article  CAS  Google Scholar 

  50. Geng K, Li Y, Xing Y, Wang L, Li N (2019) A novel polybenzimidazole membrane containing bulky naphthalene group for vanadium flow battery. J Membr Sci 586:231–239

    Article  CAS  Google Scholar 

  51. Pinar FJ, Canizares P, Rodrigo MA, Ubeda D, Lobato J (2012) Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells: effect on titanium dioxide amount. Rsc Adv 2:1547–1556

    Article  CAS  Google Scholar 

  52. Proton conductive composite membrane comprising surfactant and inorganic filler, and fuel cell comprising the same (2007) The international patent system - WIPO, Publication Number :WO2007126222. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007126222&tab=PCTBIBLIO 

  53. MeemukC CS (2018) Layer-by-layer proton donor and acceptor membrane for an efficient proton transfer system in a polymerelectrolyte membrane fuel cell. Fuel Cells 18:181–188

    Article  CAS  Google Scholar 

  54. Shen S, Jia T, Jia J, Wang N, Song D, Zhao J, Jin J, Che Q (2021) Constructing anhydrous proton exchange membranes through alternate depositing graphene oxide and chitosan on sulfonated poly (vinylidenefluoride) or sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) membranes. Eur Polym J 142:1–10

    Article  CAS  Google Scholar 

  55. Cho H, Hur E, Henkensmeier D, Jeong G, Cho E, Kim HJ, Jang JH, Lee KY, Hjuler HA, Li Q, Jensen JO, Cleemann LN (2014) meta-PBI/methylated PBI-OO blend membranes for acid doped HT PEMFC. Eur Polym J 58:135–143

    Article  CAS  Google Scholar 

  56. Mader JA, Benicewicz BC (2010) Sulfonated polybenzimidazoles for high temperature PEM fuel cells. Macromolecules 43:6706–6715

    Article  CAS  Google Scholar 

  57. Ou TJ, Chen HX, Hu BH, Zheng HT, Li WH, Wang Y (2018) A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. Int J Hydrogen Energy 43:12337–12345

    Article  CAS  Google Scholar 

  58. Kumar R, Xu CX, Scott K (2012) Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. Rsc Adv 2:8777–8782

    Article  CAS  Google Scholar 

  59. Huang F, Pingitore AT, Campbell T, Knight A, Johnson D, Johnson LG, Benicewicz BC (2020) A thermoelectrochemical converter using high-temperature polybenzimidazole (PBI) membranes for harvesting heat energy. ACS Appl Energy Mater 3:614–624

    Article  CAS  Google Scholar 

  60. Van De Ven E, Chairuna A, Merle G, Benito SP, Borneman Z, Nijmeijer K (2013) Ionic liquid doped polybenzimidazole membranes for high temperature proton exchange membrane fuel cell applications. J Power Sources 222:202–209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported financially by Selcuk University Scientific Research Project (Project No.: 18201026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkay Ozaytekin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozaytekin, I. Improving proton conductivity of poly(oxyphenylene benzimidazole) membranes with sulfonation and magnetite addition. Iran Polym J 30, 1073–1088 (2021). https://doi.org/10.1007/s13726-021-00960-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00960-7

Keywords

Navigation