Skip to main content

Radiation crosslinked polyvinyl alcohol/polyvinyl pyrrolidone/acrylic acid hydrogels: swelling, crosslinking and dye adsorption study

Abstract

Hydrogels were produced from mixtures of polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and acrylic acid (AAc) using γ-radiation at doses of 3, 7, and 10 kGy and the effect of the variation in concentration of AAc within 0%–3% (w/v) on the gelation, swelling, crosslinking, thermal properties, crystallinity, mechanical properties, and surface morphology of the hydrogels were characterized and their adsorptive removal properties for methylene blue (MB) was investigated. The swelling trend was pH-dependent which was dictated by the dominance of two competing factors namely, crosslink density and hydrophilicity. Although thermal analysis showed that the presence of AAc decreased the thermal stability of the hydrogels, SEM images exhibited gradual morphological changes establishing the role of AAc as a crosslinker, and thus increasing the elastic moduli, toughness, and crystallinity of the hydrogels. However, correlation between the characterization results revealed that, in spite of AAc occupying some of the crosslinking sites within PVA–PVP networks, at low concentration (1% w/v), it could not polymerize enough to contribute to the crosslinks. FTIR spectral analysis revealed a possible gelation mechanism along with the points of interaction among the gel-components. MB adsorption capacity of the hydrogels reached a maximum of 117 mg/g following pseudo-second-order kinetics through film diffusion mechanism while the adsorption isotherm resembled most with that of Langmuir.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. 1.

    Elhady MA, Awadallah AM (2018) Comparative study of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidinone) hydrogels induced by ultrasound and gamma rays for ionoprinting technique. Egypt J Radiat Sci Appl 31:19–29

  2. 2.

    Nho YC, Park KR (2002) Preparation and properties of PVA/PVP hydrogels containing chitosan by radiation. J Appl Polym Sci 85:1787–1794

    CAS  Article  Google Scholar 

  3. 3.

    Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering: from analysis and modeling to technology applications, vol 5. IntechOpen, Rijeka

  4. 4.

    Rosiak JM, Ulański P, Pajewski LA, Yoshii F, Makuuchi K (1995) Radiation formation of hydrogels for biomedical purposes: some remarks and comments. Radiat Phys Chem 46:161–168

    CAS  Article  Google Scholar 

  5. 5.

    Singh DK, Ray AR (1997) Radiation-induced grafting of N, N’-dimethylaminoethylmethacrylate onto chitosan films. J Appl Polym Sci 66:869–877

    CAS  Article  Google Scholar 

  6. 6.

    Abd El-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res 16:1–10

    CAS  Article  Google Scholar 

  7. 7.

    Razzak MT, Darwis D, Zainuddin S (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113

    CAS  Article  Google Scholar 

  8. 8.

    Sadegh H, Mazloumbilandi M, Chahardouri M (2017) Low-Cost materials with adsorption performance. In: Martínez L, Kharissova O, Kharisov B (ed) Handbook of ecomaterials. Springer, Cham

  9. 9.

    Shah LA, Khan SA (2019) Polymer hydrogels for wastewater treatment. In: Saldarriaga-Noreña H, Murillo-Tovar MA, Farooq R, Dongre R, Riaz S (ed) Environmental chemistry and recent pollution control approaches. IntechOpen, Rijeka

  10. 10.

    Álvarez-Torrellas S, García-Lovera R, Rodríguez A, García J (2015) Removal of methylene blue by adsorption on mesoporous carbon from peach stones. Chem Eng Trans 43:1963–1968

    Google Scholar 

  11. 11.

    Amrhar O, Nassali H, Elyoubi MS (2015) Modeling of adsorption isotherms of methylene blue onto natural Illitic clay: nonlinear regression analysis. Moroccan J Chem 3:582–593

    CAS  Google Scholar 

  12. 12.

    Sinha V, Chakma S (2019) Advances in the preparation of hydrogel for wastewater treatment: a concise review. J Environ Chem Eng 7:103295

  13. 13.

    Hill DJT, Whittaker AK (2011) Water diffusion into radiation crosslinked PVA-PVP network hydrogels. Radiat Phys Chem 80:213–218

    CAS  Article  Google Scholar 

  14. 14.

    Hu XS, Liang R, Sun G (2018) Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J Mater Chem A 6:17612–17624

    CAS  Article  Google Scholar 

  15. 15.

    Kim SJ, Park SJ, An KH, Kim NG, Kim SI (2003) Water behavior of poly(vinyl alcohol)/ poly(vinylpyrrolidone) interpenetrating polymer network hydrogels. J Appl Polym Sci 89:24–27

    CAS  Article  Google Scholar 

  16. 16.

    Huang M, Hou Y, Li Y, Wang D, Zhang L (2017) High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator. Des Monomers Polym 20:505–513

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Al-qudah YHF, Mahmoud GA, Abdel Khalek MA (2014) Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. J Radiat Res Appl Sci 7:135–145

    CAS  Article  Google Scholar 

  18. 18.

    Abd Alla SG, Nizam El-Din HM, El-Naggar AWM (2007) Structure and swelling-release behaviour of poly(vinyl pyrrolidone) (PVP) and acrylic acid (AAc) copolymer hydrogels prepared by gamma irradiation. Eur Polym J 43:2987–2998

    CAS  Article  Google Scholar 

  19. 19.

    Naghdeali MH, Adimi M (2015) Comparison between acrylic acid and methacrylamide on release and swelling properties for hydrogels based on PVP. InBiol Forum Res Trend 7:304–308

    Google Scholar 

  20. 20.

    Aytimur A, Uslu I (2014) Promising materials for wound dressing: PVA/PAA/PVP electrospun nanofibers. Polym Plast Technol Eng 53:655–660

    CAS  Article  Google Scholar 

  21. 21.

    Awadallah FA (2014) Five years in vitro study of (poly vinyl alcohol/poly vinyl pyrrolidone/poly acrylic acid) hydrogel to mimic the knee joint meniscus. Polym Adv Technol 25:581–587

  22. 22.

    Manaila E, Craciun G, Ighigeanu D, Cimpeanu C, Barna C, Fugaru V (2017) Hydrogels synthesized by electron beam irradiation for heavy metal adsorption. Materials 10:540

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  23. 23.

    Wang J, Wu W, Lin Z (2008) Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydrogels. J Appl Polym Sci 109:3018–3023

    CAS  Article  Google Scholar 

  24. 24.

    Sievers J, Sperlich K, Stahnke T, Kreiner C, Eickner T, Martin H, Guthoff RF, Schünemann M, Bohn S, Stachs O (2021) Determination of hydrogel swelling factors by two established and a novel non-contact continuous method. J Appl Polym Sci 138:50326

    CAS  Article  Google Scholar 

  25. 25.

    Shah S, Ranjha NM, Javaid Z (2013) Development and evaluation of pH-dependent interpenetrating network of acrylic acid/polyvinyl alcohol. Iran Polym J 22:811–820

    CAS  Article  Google Scholar 

  26. 26.

    Mudassir J, Ranjha NM (2008) Dynamic and equilibrium swelling studies: crosslinked pH sensitive methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels. J Polym Res 15:195–203

    CAS  Article  Google Scholar 

  27. 27.

    Wong R, Ashton M, Dodou K (2015) Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics 7:305–319

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Chavda H, Patel C (2011) Effect of crosslinker concentration on characteristics of superporous hydrogel. Int J Pharm Investig 1:17

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    CAS  Article  Google Scholar 

  30. 30.

    Ajji Z (2007) Grafting of poly(vinyl pyrrolidone) with citric acid using gamma irradiation. Nucl Instrum Meth B265:179–182

    Article  CAS  Google Scholar 

  31. 31.

    Dafader NC, Akter T, Haque ME, Swapna SP, Islam S, Huq D (2012) Effect of acrylic acid on the properties of polyvinylpyrrolidone hydrogel prepared by the application of gamma radiation. African J Biotechnol 11:13049–13057

    CAS  Article  Google Scholar 

  32. 32.

    Jianqi F, Lixia G (2002) PVA/PAA thermo-crosslinking hydrogel fiber: preparation and pH-sensitive properties in electrolyte solution. Eur Polym J 38:1653–1658

    Article  Google Scholar 

  33. 33.

    Oveissi F, Naficy S, Le TYL, Fletcher DF, Dehghani F (2019) Tough hydrophilic polyurethane-based hydrogels with mechanical properties similar to human soft tissues. J Mater Chem B 7:3512–3519

    CAS  Article  Google Scholar 

  34. 34.

    Rizwan M, Yahya R, Hassan A, Yar M, Azzahari A, Selvanathan V, Sonsudin F, Abouloula C (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9:137

    PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Nesrinne S, Djamel A (2017) Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab J Chem 10:539–547

    CAS  Article  Google Scholar 

  36. 36.

    Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  38. 38.

    Loría-Bastarrachea MI, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Vázquez-Torres H, Ávila-Ortega A (2011) A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J Therm Anal Calorim 104:737–742

    Article  CAS  Google Scholar 

  39. 39.

    Osuntokun J, Ajibade PA (2016) Structural and thermal studies of ZnS and CdS nanoparticles in polymer matrices. J Nanomater 2016:1–14. Article ID 3296071

  40. 40.

    El-Hag Ali A, Shawky HA, Abd El Rehim HA, Hegazy EA (2003) Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur Polym J 39:2337–2344

    CAS  Article  Google Scholar 

  41. 41.

    Dubinsky S, Grader GS, Shter GE, Silverstein MS (2004) Thermal degradation of poly(acrylic acid) containing copper nitrate. Polym Degrad Stab 86:171–178

    CAS  Article  Google Scholar 

  42. 42.

    Worzakowska M (2015) Thermal properties of neryl long-chain esters obtained under microwave irradiation. J Therm Anal Calorim 120:1715–1722

    CAS  Article  Google Scholar 

  43. 43.

    Thomas PS, Guerbois JP, Russell GF, Briscoe BJ (2001) FTIR study of the thermal degradation of poly(vinyl alcohol). J Therm Anal Calorim 64:501–508

    CAS  Article  Google Scholar 

  44. 44.

    Rahma A, Munir MM, Khairurrijal PA, Suendo V, Rachmawati H (2016) Intermolecular interactions and the release pattern of electrospun curcumin-polyvinyl(pyrrolidone) fiber. Biol Pharm Bull 39:163–173

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Massoumi B, Abdollahi M, Shabestari SJ, Entezami AA (2013) Preparation and characterization of polyaniline N-grafted with poly(ethyl acrylate) synthesized via atom transfer radical polymerization. J Appl Polym Sci 128:47–53

    CAS  Article  Google Scholar 

  46. 46.

    Kawasaki A, Furukawa J, Tsuruta T, Wasai G, Makimoto T (1961) Infrared spectra of poly(butyl acrylates). Die Makromol Chemie 49:76–111

    CAS  Article  Google Scholar 

  47. 47.

    Kirwan LJ, Fawell PD, Van Bronswijk W (2003) In situ FTIR-ATR examination of poly(acrylic acid) adsorbed onto hematite at low pH. Langmuir 19:5802–5807

    CAS  Article  Google Scholar 

  48. 48.

    Billingham J, Breen C, Yarwood J (1997) Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: an in situ study using ATR-FTIR. Vib Spectrosc 14:19–34

    CAS  Article  Google Scholar 

  49. 49.

    Lu Y, Wang D, Li T, Zhao X, Cao Y, Yang H, Duan YY (2009) Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface. Biomaterials 30:4143–4151

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Chatterjee A, Magee JL, Dey SK (1983) The role of homogeneous reactions in the radiolysis of water. Radiat Res 96:1

    CAS  Article  Google Scholar 

  51. 51.

    Kadlubowski S, Ulanski P, Rosiak JM (2012) Synthesis of tailored nanogels by means of two-stage irradiation. Polymer 53:1985–1991

    CAS  Article  Google Scholar 

  52. 52.

    Ghobashy MM (2018) Ionizing radiation-induced polymerization. Ioniz Radiat Effect Appl 28:113

    Google Scholar 

  53. 53.

    Davis JE, Senogles E (1981) γ-Irradiation of N-vinylpyrrolidin-2-one and its homopolymer. Aust J Chem 34:1413–1421

    CAS  Article  Google Scholar 

  54. 54.

    Rapado Raneque M, Rodríguez Rodríguez A, Peniche Covas C (2013) Hydrogel wound dressing preparation at the laboratory scale by using electron beam and gamma radiation. Nucleus 53:24–31

    Google Scholar 

  55. 55.

    Ulanski P, Bothe E, Rosiak JM, von Sonntag C (1994) OH-radical-induced crosslinking and strand breakage of poly(vinyl alcohol) in aqueous solution in the absence and presence of oxygen. A pulse radiolysis and product study. Macromol Chem Phys 195:1443–1461

    CAS  Article  Google Scholar 

  56. 56.

    Von Sonntag C, Bothe E, Ulanski P, Deeble DJ (1995) Pulse radiolysis in model studies toward radiation processing. Radiat Phys Chem 46:527–532

    Article  Google Scholar 

  57. 57.

    Bajpai AK, Bajpai J, Soni SN (2008) Preparation and characterization of electrically conductive composites of poly(vinyl alcohol)-g-poly(acrylic acid) hydrogels impregnated with polyaniline (PANI). Express Polym Lett 2:26–39

    CAS  Article  Google Scholar 

  58. 58.

    Maq B, Rahman MS (2015) Improvement of swelling behaviour of poly (vinyl pyrrolidone) and acrylic acid blend hydrogel prepared by the application of gamma radiation. Org Chem Curr Res 04:2–9

    Article  CAS  Google Scholar 

  59. 59.

    Wang Y, Xue Y, Wang J, Zhu Y, Zhu Y, Zhang X, Liao J, Li X, Wu X, Qin YX, Chen W (2019) A composite hydrogel with high mechanical strength, fluorescence, and degradable behavior for bone tissue engineering. Polymers 11:1112

    CAS  PubMed Central  Article  Google Scholar 

  60. 60.

    Palantöken S, Bethke K, Zivanovic V, Kalinka G, Kneipp J, Rademann K (2020) Cellulose hydrogels physically crosslinked by glycine: synthesis, characterization, thermal and mechanical properties. J Appl Polym Sci 137:48380

    Article  CAS  Google Scholar 

  61. 61.

    Oliveira AS, Schweizer S, Nolasco P, Barahona I, Saraiva J, Colaço R, Serro AP (2020) Tough and low friction polyvinyl alcohol hydrogels loaded with anti-inflammatories for cartilage replacement. Lubricants 8:36

    Article  Google Scholar 

  62. 62.

    Millon LE, Oates CJ, Wan W (2009) Compression properties of polyvinyl alcohol-bacterial cellulose nanocomposite. J Biomed Mater Res B 90B:922–929

    CAS  Article  Google Scholar 

  63. 63.

    Bhattacharya SS, Sen KK, Sen SO, Banerjee S, Kaity S, Ghosh AK, Ghosh A (2011) Synthesis and characterization of poly(acrylic acid)/modified bentonite superabsorbent polymer. Int J Polym Mater Polym Biomater 60:1015–1025

    CAS  Article  Google Scholar 

  64. 64.

    Ibrahim NA, Chieng BW, Wan Yunus WMZ (2010) Morphology, thermal and mechanical properties of biodegradable poly(butylene succinate)/poly(butylene adipate-co-terephthalate)/clay nanocomposites. Polym Plast Technol Eng 49:1571–1580

    CAS  Article  Google Scholar 

  65. 65.

    Zhang H, Chen L, Lu M, Li J, Han L (2016) A novel film-pore-surface diffusion model to explain the enhanced enzyme adsorption of corn stover pretreated by ultrafine grinding. Biotechnol Biofuels 9:181

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Bello K, Sarojini BK, Narayana B, Rao A, Byrappa K (2018) A study on adsorption behavior of newly synthesized banana pseudo-stem derived superabsorbent hydrogels for cationic and anionic dye removal from effluents. Carbohydr Polym 181:605–615

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Ahmad MA, Ahmad Puad NA, Bello OS (2014) Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour Ind 6:18–35

    Article  Google Scholar 

  68. 68.

    Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    CAS  Article  Google Scholar 

  69. 69.

    Miyah Y, Lahrichi A, Idrissi M, Boujraf S, Taouda H, Zerrouq F (2017) Assessment of adsorption kinetics for removal potential of crystal violet dye from aqueous solutions using Moroccan pyrophyllite. J Assoc Arab Univ Basic Appl Sci 23:20–28

    Google Scholar 

  70. 70.

    Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites: II. Kinetics 1. J Am Chem Soc 69:2836–2848

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Weber WJ, Morris JC, Sanit J (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Proc Am Soc Civ Eng 89:31–38

    Article  Google Scholar 

  72. 72.

    Reichenberg D (1953) Properties of ion-exchange resins in relation to their structure: III. Kinetics of exchange. J Am Chem Soc 75:589–597

    CAS  Article  Google Scholar 

  73. 73.

    Malash GF, El-Khaiary MI (2010) Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem Eng J 163:256–263

    CAS  Article  Google Scholar 

  74. 74.

    Tang H, Zhou W, Zhang L (2012) Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater 209–210:218–225

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  75. 75.

    Saadi R, Saadi Z, Fazaeli R, Fard NE (2015) Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J Chem Eng 32:787–799

    CAS  Article  Google Scholar 

  76. 76.

    Dada A (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+onto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45

    Article  CAS  Google Scholar 

  77. 77.

    Ogunmodede OT, Ojo AA, Adewole E, Adebayo OL (2015) Adsorptive removal of anionic dye from aqueous solutions by mixture of kaolin and bentonite clay: characteristics, isotherm, kinetic and thermodynamic studies. Iran J Energy Environ 6:147–153

    Google Scholar 

  78. 78.

    Yao Y, Bing H, Feifei X, Xiaofeng C (2011) Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem Eng J 170:82–89

    CAS  Article  Google Scholar 

  79. 79.

    Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We hereby acknowledge the Institute of Radiation and Polymer Technology, Atomic Energy Research Establishment (AERE), Bangladesh Atomic Energy Commission (BAEC), Dhaka, Bangladesh and also Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, for the tremendous support while doing the research work. Finally, we must declare our special thanks to Dr. Samina Ahmed Institute of Glass and Ceramics Research and Testing, Bangladesh Council of Scientific and Industrial Research, Bangladesh for giving us the opportunity of collaboration in finalizing our research works. There was no funding for the research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md. Saifur Rahaman.

Ethics declarations

Conflict of interest

All the authors declared no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 891 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahaman, M.S., Hasnine, S.M.M., Ahmed, T. et al. Radiation crosslinked polyvinyl alcohol/polyvinyl pyrrolidone/acrylic acid hydrogels: swelling, crosslinking and dye adsorption study. Iran Polym J 30, 1101–1116 (2021). https://doi.org/10.1007/s13726-021-00949-2

Download citation

Keywords

  • Hydrogel
  • γ-Radiation
  • Swelling mechanism
  • Methylene blue
  • Kinetics
  • Thermodynamics