Skip to main content
Log in

Biphenol based membranes with ionic channels for fuel cell application

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Copolymers with cross-linkable pendant carboxylic acid moieties were successfully synthesized via direct copolymerization. Two types of copolymers were prepared. In the first type of copolymers, sulfonic groups were introduced on the biphenol monomers. The second type consisted of a series of copolymers having sulfonic groups on the sulfone monomers. Cross-linking of these copolymers was carried out with the prepared hexafluoro-bisphenol-A epoxy resin (HFB) and membranes were cast on glass plates. Cross-linking caused reduction in excessive fuel cross over, water and methanol uptake without compromising much on the basic membrane properties such as proton conductivity, ion exchange capacity, and selectivity ratio. The proton conductivity increased with the rise in temperature but decreased with further rise in epoxy content. The stability of the cross-linked membranes toward radical oxidation in fuel cell ambiance was revealed from Fenton’s test as cr-6FB-SP-HFB membranes exhibited highest oxidative stability. The improvement in the performance of the cross-linked membranes was found by comparing them with pristine membranes. Atomic force microscopy (AFM) and X-ray diffraction (XRD) analyses confirmed phase separation and amorphous behavior of these membranes. Mechanical properties were determined with the help of a Universal testing machine (UTM). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses revealed excellent thermal stability of these membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kirubakaran A, Shailendra J, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13:2430–2440. https://doi.org/10.1016/j.rser.2009.04.004

    Article  CAS  Google Scholar 

  2. Kim AR, Vinothkannan M, Song MH, Lee J-Y, Lee H-K, Yoo DJ (2020) Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly(ether ether ketone) membrane: effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Compos B Eng 188:107890. https://doi.org/10.1016/j.compositesb.2020.107890

    Article  CAS  Google Scholar 

  3. Sharaf OZ, Orphan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853. https://doi.org/10.1016/j.rser.2014.01.012

    Article  CAS  Google Scholar 

  4. Nasirinezhad M, Ghaffarian SR, Tohidian M (2021) Eco-friendly polyelectrolyte nanocomposite membranes based on chitosan and sulfonated chitin nanowhiskers for fuel cell applications. Iran Polym J 30:355–367. https://doi.org/10.1007/s13726-020-00895-5

    Article  CAS  Google Scholar 

  5. Yin Y, Li Z, Yang X, Cao L, Wang C, Zhang B, Wu H, Jiang Z (2016) Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. J Power Sources 332:265–273. https://doi.org/10.1016/j.jpowsour.2016.09.135

    Article  CAS  Google Scholar 

  6. Gómez EER, Hernández JHM, Astaiza JED (2020) Development of a chitosan/PVA/TiO2 nanocomposite for application as a solid polymeric electrolyte in fuel cells. Polymers 12:1691. https://doi.org/10.3390/polym12081691

    Article  CAS  Google Scholar 

  7. Eisenberg A, Yeager HL (1982) Perfluorinated ionomer membranes. ACS Symp Ser Am Chem Soc. https://doi.org/10.1021/bk-1982-0180.fw001

    Article  Google Scholar 

  8. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternate polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612. https://doi.org/10.1021/cr020711a

    Article  CAS  PubMed  Google Scholar 

  9. Wee J-H (2007) Applications of proton exchange membrane fuel cell systems. Renew Sustain Energy Rev 11:1720–1738. https://doi.org/10.1016/j.rser.2006.01.005

    Article  CAS  Google Scholar 

  10. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4586. https://doi.org/10.1021/cr0207123

    Article  CAS  PubMed  Google Scholar 

  11. Gil-Castell O, Teruel-Juanes R, Arenga F, Salaberria AM, Baschetti MG, Labidi J, Badia JD, Ribes-Greusa A (2019) Crosslinked chitosan/poly(vinyl alcohol)-based polyelectrolytes for proton exchange membranes. React Funct Polym 142:213–222. https://doi.org/10.1016/j.reactfunctpolym.2019.06.003

    Article  CAS  Google Scholar 

  12. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications-a review. J Membrane Sci 259:10–26. https://doi.org/10.1016/j.memsci.2005.01.035

    Article  CAS  Google Scholar 

  13. Hamrock SJ, Yandrasits MA (2006) Proton exchange membranes for fuel cell applications. J Macromol Sci Polym Rev 46:219–244. https://doi.org/10.1080/15583720600796474

    Article  CAS  Google Scholar 

  14. Li L, Zhang J, Wang YX (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Membrane Sci 226:159–167. https://doi.org/10.1016/j.memsci.2003.08.018

    Article  CAS  Google Scholar 

  15. Lufrano F, Gatto I, Staiti P, Antonucci V, Passalacqua E (2001) Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ion 145:47–51. https://doi.org/10.1016/S0167-2738(01)00912-2

    Article  CAS  Google Scholar 

  16. Molla-Abbasi P, Janghorban K, Asgari MS (2018) A novel heteropolyacid-doped carbon nanotubes/Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications. Iran Polym J 27:77–86. https://doi.org/10.1007/s13726-017-0587-0

    Article  CAS  Google Scholar 

  17. Costa ML, Pardini LC, Rezende MC (2005) Influence of aromatic amine hardeners in the cure kinetics of an epoxy resin used in advanced composites. Mater Res 8:65–70. https://doi.org/10.1590/S1516-14392005000100012

    Article  CAS  Google Scholar 

  18. Maka H, Spychaj T, Pilawka R (2014) Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. Express Polym Lett 8:723–732. https://doi.org/10.3144/expresspolymlett.2014.75

    Article  CAS  Google Scholar 

  19. Kiran V, Awasthi S, Gaur B (2015) Hydroquinone based sulfonated poly(arylene ether sulfone) copolymer as proton exchange membrane for fuel cell applications. Express Polym Lett 9:1053–1067. https://doi.org/10.3144/expresspolymlett.2015.95

    Article  CAS  Google Scholar 

  20. Boroglu MS, Cavus S, Boz I, Ata A (2011) Synthesis and characterization of poly (vinyl alcohol) proton exchange membranes modified with 4, 4-diaminodiphenylether-2,2-disulfonic acid. Express Polym Lett 5:470–478. https://doi.org/10.3144/expresspolymlett.2011.45

    Article  CAS  Google Scholar 

  21. Han M, Zhang G, Li M, Wang S, Liu Z, Li H, Zhang Y, Xu D, Wang J, Ni J, Na H (2011) Sulfonated poly(ether ether ketone)/polybenzimidazole oligomer/epoxy resin composite membranes in situ polymerization for direct methanol fuel cell usages. J Power Sources 196:9916–9923. https://doi.org/10.1016/j.jpowsour.2011.08.049

    Article  CAS  Google Scholar 

  22. Tong JY, Guo Q, Wang XX (2009) Properties and structure of SPEEK proton exchange membrane doped with nanometer CeO2 and treated with high magnetic field. Express Polym Lett 3:821–831. https://doi.org/10.3144/expresspolymlett.2009.10

    Article  CAS  Google Scholar 

  23. Han S, Zhang M-S, Shin J, Lee Y-S (2014) A convenient crosslinking method for sulfonated poly (ether ether ketone) membranes via friedel-crafts reaction using 1,6-dibromohexane and aluminium trichloride. J Appl Polym Sci 131:40695. https://doi.org/10.1002/app.40695

    Article  CAS  Google Scholar 

  24. Lee KH, Chu JY, Kim AR, Nahm KS, Yoo DJ (2013) Highly sulfonated poly (arylene biphenylsulfone ketone) block copolymers prepared via post-sulfonation for proton conducting electrolyte membranes. Bull Korean Chem Soc 34:1763–1770. https://doi.org/10.5012/bkcs.2013.34.6.1763

    Article  CAS  Google Scholar 

  25. Matsumoto K, Higashihara T, Ueda M (2009) Locally sulfonated poly(ether sulfone)s with highly sulfonated units as proton exchange membrane. J Polym Sci A Polym Chem 47:3444–3453. https://doi.org/10.1002/pola.23403

    Article  CAS  Google Scholar 

  26. Kim H, Kabir MDL, Choi S-J (2019) Imparting high proton conductivity to Nafion® tuned by acidic chitosan for low-temperature proton exchange membrane fuel cell applications. J Nanosci Nanotechnol 19:6625–6629. https://doi.org/10.1166/jnn.2019.17081

    Article  CAS  PubMed  Google Scholar 

  27. Ding FC, Wang SJ, Xiao M, Meng YZ (2007) Cross-linked sulfonated poly(phathalazinone ether ketone)s for PEM fuel cell application as proton-exchange membrane. J Power Sources 164:488–495. https://doi.org/10.1016/j.jpowsour.2006.11.028

    Article  CAS  Google Scholar 

  28. Guhan S, Sangeetha D (2008) Evaluation of sulfonated poly(ether ether ketone) silicotungstic acid composite membranes for fuel cell applications. Int J Polym Mater 58:87–98. https://doi.org/10.1080/00914030802565442

    Article  CAS  Google Scholar 

  29. Van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16:615–620. https://doi.org/10.1016/0032-3861(75)90157-3

    Article  Google Scholar 

  30. Shahi VK (2007) Highly charged proton-exchange membrane: Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells. Solid State Ion 177:3395–3404. https://doi.org/10.1016/j.ssi.2006.10.023

    Article  CAS  Google Scholar 

  31. Hsu WY, Gierke TD (1983) Ion transport and clustering in Nafion perfluorinated membranes. J Membr Sci 13:307–326. https://doi.org/10.1016/S0376-7388(00)81563-X

    Article  CAS  Google Scholar 

  32. Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28:7303–7330. https://doi.org/10.1021/ef501977k

    Article  CAS  Google Scholar 

  33. Wang L, Wang D, Zhu G, Li J (2011) Synthesis and properties of highly branched sulfonated poly(arylene ether)s as proton exchange membranes. Eur Polym J 47:1985–1993. https://doi.org/10.1016/j.eurpolymj.2011.07.016

    Article  CAS  Google Scholar 

  34. Malakhov AO, Volkov AV (2020) Modification of polymer membranes for use in organic solvents. Russ J Appl Chem 93:14–24. https://doi.org/10.1134/S1070427220010024)

    Article  CAS  Google Scholar 

  35. Nguyen MDT, Dang HS, Kim DJ (2015) Proton exchange membranes based on sulfonatedpoly(arylene ether ketone) containing triazole group for enhanced proton conductivity. J Membr Sci 496:13–20. https://doi.org/10.1016/j.memsci.2015.08.029

    Article  CAS  Google Scholar 

  36. Sahu AK, Pitchumani S, Sridhar P, Shukla AK (2009) Nafion and modified- Nafion membranes for polymer electrolyte fuel cells: an overview. Bull Mater Sci 32:285–294. https://doi.org/10.1007/s12034-009-0042-8

    Article  CAS  Google Scholar 

  37. d’Almeida JRM, Menezes GW, Monteiro SN (2003) Ageing of the DGEBA/TETA epoxy system with off-stoichiometric compositions. Mater Res 6:415–420. https://doi.org/10.1590/S1516-14392003000300017

    Article  Google Scholar 

  38. Kim AR, Vinothkannan M, Lee KH, Chu JY, Ryu SK, Kim HG, Lee J-Y, Lee H-K, Yoo DJ (2020) Ameliorated performance of sulfonated poly(arylene ether sulfone) block copolymers with increased hydrophilic oligomer ratio in proton-exchange membrane fuel cells operating at 80% relative humidity. Polymers 12:1871. https://doi.org/10.3390/polym12091871

    Article  CAS  PubMed Central  Google Scholar 

  39. Krishnan P, Park J-S, Kim C-S (2006) Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol-gel process. J Membr Sci 279:220–229. https://doi.org/10.1016/j.memsci.2005.12.010

    Article  CAS  Google Scholar 

  40. Mokhtaruddin SR, Mohamad AB, Loh KS, Kadhum AAH (2016) Thermal properties and conductivity of nafion-zirconia composite membrane. Malaysian J Anal Sci 20:670–677. https://doi.org/10.17576/mjas-2016-2003-28670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Gaur.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, R., Kiran, V., Gaur, B. et al. Biphenol based membranes with ionic channels for fuel cell application. Iran Polym J 30, 855–872 (2021). https://doi.org/10.1007/s13726-021-00942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00942-9

Keywords

Navigation