Skip to main content
Log in

5-Fluorouracil-loaded poly(vinyl alcohol)/chitosan blend nanofibers: morphology, drug release and cell culture studies

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Electrospun polymeric nanofibers as carriers for anticancer drugs have received a great deal of attention to treat tumor cells. This work was aimed to prepare an optimized nanofibrous sample based on poly(vinyl alcohol) (PVA)/chitosan (CS) blend, and then evaluate it containing 5-fluorouracil (5-FU) in terms of morphology, drug release, and cell culture. The electrospinning conditions to produce PVA/CS (50/50) blend nanofibers with an average diameter of approximately 150.8 nm were adjusted as follows: applied voltage 17 kV, needle tip to collector distance 60 cm, and flow rate 0.1 mL/h. The obtained results from Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) showed that there were no chemical interactions between the polymers and drug during the electrospinning process and the uniform morphology without beads. Moreover, to prolong 5-FU release from the blend nanofibers, three layered samples consisting of PVA/CS blend and poly (ε-caprolactone) (PCL) [PVA/CS-PCL 3-layers] were electrospun. On the other hand, by adding PCL in the PVA/CS blend nanofibers, the samples showed more hydrophobic property. Eventually, thiazolyl blue (MTT) assay along with NIH 3T3 cells culture proved that the sample could kill more than 80% of the cells. This formulation could be a promising candidate for cancer therapy potentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sadeghi F, Etebari M, Roudkenar MH, Jahanian-Najafabadi A (2018) Lipocalin2 protects human embryonic kidney cells against cisplatin–induced genotoxicity. Iran J Pharm Res 17:147–154

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Karkhane Yousefi M, Seyed Hashtroudi M, Mashinchian Moradi A, Ghasempour AR (2018) In vitro investigating of anticancer activity of focuxanthin from marine brown seaweed species. Glob J Environ Sci Manag 4:81–90

    CAS  Google Scholar 

  3. Lin TC, Lin FH, Lin JC (2012) In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater 8:2704–2711

    CAS  PubMed  Google Scholar 

  4. Luo X, Xu G, Song H, Yang S, Yan S, Jia G, Li X (2012) Promoted antitumor activities of acid-labile electrospun fibers loaded with hydroxycamptothecin via intratumoral implantation. Eur J Pharm Biopharm 82:545–553

    CAS  PubMed  Google Scholar 

  5. de Mattos AC, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM (2016) Polymeric nanoparticles for oral delivery of 5-fluorouracil: formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur J Pharm Sci 84:83–91

    PubMed  Google Scholar 

  6. Chao YL, Anders CK (2018) TYMS gene polymorphisms in breast cancer patients receiving 5–fluorouracil-based chemotherapy. Clin Breast Cancer 18:e301–e304

    CAS  PubMed  Google Scholar 

  7. Jouybari MH, Hosseini S, Mahboobnia K, Boloursaz LA, Moradi M, Irani M (2019) Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro. Colloid Surface B 179:495–504

    Google Scholar 

  8. Varshosaz J, Jajanian-Najafabadi A, Soleymani A, Khajavinia A (2018) Poly (butylene adipate-co-terephthalate) electrospun nanofibers loaded with 5-fluorouracil and curcumin in treatment of colorectal cancer cells. Polym Test 65:217–230

    CAS  Google Scholar 

  9. Zhao J, Zhu Y, Ye C, Chen Y, Wang S, Zou D, Li Z (2019) Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int J Nanomed 14:3893–3909

    CAS  Google Scholar 

  10. Cassano R, Nicoletta FP, Mellace S, Grande F, Picci N, Trombino S (2017) Liquid crystalline microspheres for 5-fluorouracil specific release. J Drug Deliv Sci Tec 41:482–487

    CAS  Google Scholar 

  11. Wang HM, Lin CY, Hsieh CH, Hsu CL, Fan KH, Chang JTC, Huang SF, Kang CJ, Liao CT, Ng SH (2016) Induction chemotherapy with dose-modified docetaxel, cisplatin, and 5-fluorouracil in Asian patients with borderline resectable or unresectable head and neck cancer. J Formos Med Assoc 116:185–192

    PubMed  Google Scholar 

  12. Bukkitgar SD, Shetti NP (2016) Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode. Mat Sci Eng C Mater 65:262–268

    CAS  Google Scholar 

  13. Risinggård HK, Cooil S, Mazzola F, Hu D, Kjærvik M, Østli ER, Patil N, Preobrajenski A, Evans DA, Breiby DW (2018) Degradation of the chemotherapy drug 5-fluorouracil on medical-grade silver surfaces. Appl Surf Sci 435:1213–1219

    Google Scholar 

  14. Haggag YA, Osman MA, El-Gizawy SA, Goda AE, Shamloula MM, Faheem AM, McCarron PA (2018) Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice. Biomed Pharmacother 105:215–224

    CAS  PubMed  Google Scholar 

  15. Aggarwal U, Goyal AK, Rath G (2017) Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mat Sci Eng C Mater 75:125–132

    CAS  Google Scholar 

  16. Tariq I, Yousaf AM, Raza SA, Shahzad Y, Hussain T, Khan IU, Mahmood T, Jamshaid M (2019) Cellulosic and acrylic polymers based composites for controlled drug release. Iran Polym J 28:769–776

    CAS  Google Scholar 

  17. Mishra DK, Shandilya R, Mishra PK (2018) Lipid based nanocarriers: A translational perspective. Nanomed Nanotechnol 14:2023–2050

    CAS  Google Scholar 

  18. Negm NA, Hefni HHH, Abd-Elaal AAA, Badr EA, Abou Kana MTH (2020) Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol 152:681–702

    CAS  PubMed  Google Scholar 

  19. Akolade JO, Oloyede HOB, Salawu MO, Amuzat AO, Ganiyu AI, Onyenekwe PC (2018) Influence of formulation parameters on encapsulation and release characteristics of curcumin loaded in chitosan-based drug delivery carriers. J Drug Deliv Sci Tec 45:11–19

    CAS  Google Scholar 

  20. Wei S, Ching YC, Chuah CH (2020) Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydr Polym 231:115744

    CAS  PubMed  Google Scholar 

  21. Rao KK, Rao KM, Kumar PN, Chung ID (2010) Novel chitosan-based pH sensitive micro-networks for the controlled release of 5-fluorouracil. Iran Polym J 19:265–276

    CAS  Google Scholar 

  22. George D, Maheswari PU, Begum KMMS (2020) Chitosan-cellulose hydrogel conjugated with L-histidine and zinc oxide nanoparticles for sustained drug delivery: kinetics and in-vitro biological studies. Carbohydr Polym 236:116101

    CAS  PubMed  Google Scholar 

  23. Muddineti OS, Shah A, Rompicharla SVK, Ghosh B, Biswas S (2018) Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int J Biol Macromol 118:857–863

    CAS  PubMed  Google Scholar 

  24. Motawi TK, El-Maraghy SA, ElMeshad AN, Nady OM, Hammam OA (2017) Cromolyn chitosan nanoparticles as a novel protective approach for colorectal cancer. Chem Biol Interact 275:1–12

    CAS  PubMed  Google Scholar 

  25. Ardeshirzadeh B, Anaraki NA, Irani M, Rad LR, Shamshiri S (2015) Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mat Sci Eng C Mater 48:384–390

    CAS  Google Scholar 

  26. Jankowska K, Zdarta J, Grzywaczyk A, Kijeńska-Gawrońska E, Biadasz A, Jesionowski T (2020) Electrospun poly(methyl methacrylate)/polyaniline fibres as a support for laccase immobilisation and use in dye decolourisation. Environ Res 2:109332

    Google Scholar 

  27. Illangakoon UE, Yu DG, Ahmad BS, Chatterton NP, Williams GR (2015) 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning. Int J Pharm 495:895–902

    CAS  PubMed  Google Scholar 

  28. Zahedi P, Rezaeian I, Jafari SH, Karami Z (2013) Preparation and release properties of electrospun poly (vinyl alcohol)/poly (ɛ-caprolactone) hybrid nanofibers: optimization of process parameters via D-optimal design method. Macromol Res 21:649–659

    CAS  Google Scholar 

  29. Heidari M, Bahrami H, Ranjbar-Mohammadi M (2017) Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Mat Sci Eng C Mater 78:218–229

    CAS  Google Scholar 

  30. Badawi MA, El-Khordagui LK (2014) A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs. Eur J Pharm Sci 58:44–54

    CAS  PubMed  Google Scholar 

  31. Albetran H, Dong Y, Low IM (2015) Characterization and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method. J Asian Ceram Soc 3:292–300

    Google Scholar 

  32. Ghelich R, Jahannama MR, Abdizadeh H, Torknik FS, Vaezi MR (2019) Central composite design (CCD)-Response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibers. Compos Part B Eng 166:527–541

    CAS  Google Scholar 

  33. Asvar Z, Mirzaei E, Azarpira N, Geramizadeh B, Fadaie M (2017) Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology. J Mech Behav Biomed 75:369–378

    CAS  Google Scholar 

  34. Moradi G, Dabirian F, Mohammadi P, Rajabi L, Babaei M, Shiri N (2018) Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: Characterization and process optimization by response surface methodology. Chem Eng Res Des 129:182–196

    CAS  Google Scholar 

  35. Arifeen WU, Kim M, Choi J, Yoo K, Kurniawan R, Ko TJ (2019) Optimization of porosity and tensile strength of electrospun polyacrylonitrile nanofibrous membranes. Mater Chem Phys 229:310–318

    CAS  Google Scholar 

  36. Habiba U, Siddique TA, Lee JJL, Joo TC, Ang BC, Afifi AM (2018) Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohydr Polym 191:79–85

    CAS  PubMed  Google Scholar 

  37. Reshmi CR, Suja PS, Manaf O, Sanu PP, Sujith A (2017) Nanochitosan enriched poly ε-caprolactone electrospun wound dressing membranes: A fine tuning of physicochemical properties, hemocompatibility and curcumin release profile. Int J Biol Macromol 108:1261–1272

    Google Scholar 

  38. Wali A, Zhang Y, Sengupta P, Higaki Y, Takahara A, Badiger MV (2018) Electrospinning of non-ionic cellulose ethers/polyvinyl alcohol nanofibers: characterization and applications. Carbohydr Polym 181:175–182

    CAS  PubMed  Google Scholar 

  39. Liao H, Qi R, Shen M, Cao X, Guo R, Zhang Y, Shi X (2011) Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloid Surface B 84:528–535

    CAS  Google Scholar 

  40. Sedghi R, Shaabani A, Mohammadi Z, Samadi FY, Isaei E (2017) Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohydr Polym 159:1–10

    CAS  PubMed  Google Scholar 

  41. Yan E, Fan Y, Sun Z, Gao J, Hao X, Pei S, Wang C, Sun L, Zhang D (2014) Biocompatible core–shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Mat Sci Eng CMater 41:217–223

    CAS  Google Scholar 

  42. Khatti T, Naderi-Manesh H, Kalantar SM (2017) Prediction of diameter in blended nanofibers of polycaprolactone-gelatin using ANN and RSM. Fiber Polym 18:2368–2378

    CAS  Google Scholar 

  43. Balakrishnan P, Gardella L, Forouharshad M, Pellegrino T, Monticelli O (2018) Star poly (ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. Colloid Surface B 161:488–496

    CAS  Google Scholar 

  44. Madadian-Bozorg N, Zahedi P, Shamsi M, Safarian S (2018) Poly (methacrylic acid)-based molecularly imprinted polymer nanoparticles containing 5-fluourouracil used in colon cancer therapy potentially. Polym Adv Technol 29:2401–2409

    CAS  Google Scholar 

  45. Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133

    CAS  PubMed  Google Scholar 

  46. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  PubMed  Google Scholar 

  47. Hsieh WC, Liau JJ, Li YJ (2015) Characterization and cell culture of a grafted chitosan scaffold for tissue engineering. Int J Polym Sci 2015:935305

    Google Scholar 

  48. Guerra AJ, Tejeda-Alejandre R, Rodríguez CA, Ciurana J (2019) Electrospun tubular scaffold for stenting application: a proof of concept. 8th manufacturing engineering society international conference. Spain 2019:312–319

    Google Scholar 

  49. Azhar FF, Olad A (2014) A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate–chitosan/montmorillonite nanocomposite systems. Appl Clay Sci 101:288–296

    Google Scholar 

  50. Liu S, Zhang J, Cui X, Guo Y, Zhang X, Hongyan W (2016) Synthesis of chitosan-based nanohydrogels for loading and release of 5-fluorouracil. Colloid Surface A 490:91–97

    CAS  Google Scholar 

  51. Janardhanam LSL, Indukuri VV, Verma P, Dusane AC, Venuganti VVK (2020) Functionalized layer-by-layer assembled film with directional 5-fluorouracil release to target colon cancer. Mat Sci Eng CMater 115:111118

    CAS  Google Scholar 

  52. Guo Y, Chen Y, Han P, Liu Y, Li W, Zhu F, Fu K, Chu M (2020) Biocompatible chitosan-carbon nanocage hybrids for sustained drug release and highly efficient laser and microwave co-irradiation induced cancer therapy. Acta Biomater 103:237–246

    CAS  PubMed  Google Scholar 

  53. Wu R, Niamat RA, Sansbury B, Borjigin M (2015) Fabrication and evaluation of multilayer nanofiber-hydrogel meshes with a controlled release property. Fibers 3:296–308

    CAS  Google Scholar 

  54. Jung KH, Jung WY, Oh IK, Kang KU, Baek SH (2000) Synthesis and cytotoxic effects of deoxy-tomentellin. Arch Pharm Res 23:121–127

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Zahedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfahani, R.E., Zahedi, P. & Zarghami, R. 5-Fluorouracil-loaded poly(vinyl alcohol)/chitosan blend nanofibers: morphology, drug release and cell culture studies. Iran Polym J 30, 167–177 (2021). https://doi.org/10.1007/s13726-020-00882-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00882-w

Keywords

Navigation