Skip to main content

Abiotic and biotic degradations of a LDPE blend in soil of South Brazil landfill

Abstract

Polyethylene degrades slowly when discarded in the environment and exposed to natural weathering. A solution to this problem is the incorporation of additives to accelerate its biodegradation. In the present study, a biodegradable low-density polyethylene (LDPE) blend was obtained by the mixture of LDPE with a biodegrading additive (8% w/w) and the effect of accelerated weathering on biodegradation process was assessed. Chemical, mechanical, thermal, and morphological properties of non-aged and aged samples were studied. Results showed that aging process caused changes  on structural characteristics (insertion of functional groups), morphological (appearance of micro-cracks and increased roughness), mechanical (greater stiffness and loss of plasticity) and thermal (lower degree of crystallinity and thermal stability) properties. The presence of biodegrading additive contributed to aging process, since polar functional groups were inserted into additive exposed to soil underwent greater degradation than their non-aged counterparts. CO2 production of aged LDPE blend demonstrated that accelerated weathering influences biodegradation process. In this work, due to availability of O2 gas, aerobic microorganisms can be the main responsible by the material deterioration, leading to production of microbial biomass, CO2 and H2O. Thus, the results of biodegradation (166 days) obtained in this work are promising, once it was reached a natural soil from South Brazil landfill.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeter Biodeg 84:204–210

    CAS  Article  Google Scholar 

  2. PeixotoJ SL, Krüger R (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324B:634–644

    Article  Google Scholar 

  3. Silva E, Neto J (2016) Impactos Ambientais da produção de garrafas de polietileno numa indústria de Teresina. Polimeros 26:49–54

    Article  Google Scholar 

  4. Adelhafidi A, Babaghayou I, Chabira S, Sebaa M (2015) Spectroscopic analysis of weathering effects on low density polyethylene. J Chem Eng Chem Res 2:529–535

    CAS  Google Scholar 

  5. Sen S, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3:462–473

    Article  Google Scholar 

  6. Scott G (2000) Green polymers. Polym Degrad Stabil 68:1–7

    CAS  Article  Google Scholar 

  7. Ojeda T, Dalmolin E, Forte M, Jacques R, Bento F, Camargo F (2009) Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym Degrad Stabil 94:965–970

    CAS  Article  Google Scholar 

  8. Martínez-Romo A, González-Mota R, Soto-Bernal J, Rosales-Candelas I (2015) Investigating the degradability of HDPE, LDPE, PE-BIO, and PE-OXO films under UV-B radiation. J Spectrosc 10:1–6

    Article  Google Scholar 

  9. Haider T, Völker C, Kramm J, Landfester K, Wurm F (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed58:50–62

    Google Scholar 

  10. Morro A, Catalina F, Sanchez-León E, Abrusci C (2019) Photodegradation and biodegradation under thermophile conditions of mulching films based on poly (butylene adipate-coterephthalate) and its blend with poly (lactic acid). J Polym Environ 27:352–363

    CAS  Article  Google Scholar 

  11. Shah A, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    CAS  Article  Google Scholar 

  12. Esmaeli A, Pourbabaee A, Alikhani H, Shabani F, Esmaeli E (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS ONE 8e:71720

    Article  Google Scholar 

  13. Yang J, Yang Y, Wu W, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating wax worms. Environ Sci Technol 48:13776–13784

    CAS  Article  Google Scholar 

  14. Ojeda T, Freitasb A, Birck K, Dalmolin E, Jacques R, Bento F, Camargo F (2011) Degradability of linear polyolefins under natural weathering. Polym Degrad Stabil 96:703–707

    CAS  Article  Google Scholar 

  15. Albertsson A, Kalrsson S (1994) Environment-adaptable polymers. Polym Degrad Stabil 41:345–349

    Article  Google Scholar 

  16. Gewert B, Plassmann M, Macleod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Proc Imp 17:1513–1521

    CAS  Google Scholar 

  17. Raddadi N, Fava F (2019) Biodegradation of oil-based plastics in the environment: existing knowledge and needs of research and innovation. Sci Total Environ 679:148–158

    CAS  Article  Google Scholar 

  18. Fontanella S, Bonhomme S, Kounty M, Husarova L, Brusson JM, Courdavaulti JP, Pitterif S, Samuelg G, Pichonh G, Lemairea J, Delort AM (2010) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stabil 95:1011–1021

    CAS  Article  Google Scholar 

  19. Nowak B, Pajak J, Drozd-Brarkowicz M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeter Biodeg 65:757–767

    CAS  Article  Google Scholar 

  20. Corti A, Sudhakar M, Chiellini E (2012) Assessment of the whole environment degradation of oxo-biodegradable linear low density polyethylene (LLDPE) films designed for mulching applications. J Polym Environ 20:1007–1018

    CAS  Article  Google Scholar 

  21. Richter M, Schulenburg C, Jankowska D, Heck T, Faccio G (2015) Novel materials through nature’s catalysts. Mater Today 18:459–467

    CAS  Article  Google Scholar 

  22. Pires J, Miranda G, de Souza G, Fraga F, Ramos A, de Araújo G, Ligabue R, Azevedo C, Lourega R, de Lima J (2019) Investigation of degradation of polypropylene in soil from enzymatic additive. Iran Polym J 28:1045–1055

    CAS  Article  Google Scholar 

  23. Pires J, Ramos A, Miranda G, de Souza G, Fraga F, Azevedo C, Ligabue R, de Lima J, Lourega R (2020) Natural freshwater degradation of polypropylene blends with additives of a distinct nature. Polym Bull published online

  24. Dartora P, Santana R, Moreira A (2015) The influence of the long chain branches of LLDPE on processability and physical properties. Polimeros 25:531–539

    Article  Google Scholar 

  25. Barbeş L, Rădulescu C, Stihi C (2014) Spectrometry characterization of polymeric materials. Rom Rep Phys 66:765–777

    Google Scholar 

  26. Tavares C, Gulmine J, Lepienski C, Akcelrud L (2003) The effect of accelerated aging on the surface mechanical properties of polyethylene. Polym Degrad Stabil 81:367–373

    CAS  Article  Google Scholar 

  27. Gulmine J, Janissek P, Heise H, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stabil 79:385–397

    CAS  Article  Google Scholar 

  28. Ndlovu S, Van Reenen A, Luyt A (2013) LDPE-wood composites utilizing degraded LDPE as compatibilizer. Compos A 51:80–88

    CAS  Article  Google Scholar 

  29. Restrepo-Flórez JM, Bassi A, Thompson M (2014) Microbial degradation and deterioration of polyethylene—a review. Int Biodet Biodeg 88:83–90

    Article  Google Scholar 

  30. Reddy M, Gupta R, Bhattacharya S, Parthasarathy R (2008) Abiotic oxidation studies of oxi-degradable polyethylene. J Polym Environ 16:27–34

    CAS  Article  Google Scholar 

  31. Lucas E, Soares B, Monteiro E (2001) Caracterização de polímeros—determinação de peso molecular e análise térmica. E-papers, Rio de Janeiro

    Google Scholar 

  32. Pedroso A, Rosa D (2005) Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohyd Polym 59:1–9

    CAS  Article  Google Scholar 

  33. Vogt N, Kleppe E (2009) Oxo-biodegradable polyolefins show continued and increased thermal oxidative degradation after exposure to light. Polym Degrad Stabil 94:659–663

    CAS  Article  Google Scholar 

  34. Benítez A, Sánchez J, Arnal M, Müller A (2013) Monitoring abiotic degradation of branched polyethylenes formulated with pro-oxidant through different mechanical tests. Polym Degrad Stabil 98:1705–1716

    Article  Google Scholar 

  35. Benítez A, Sánchez J, Arnal M, Müller A, Rodríguez O, Morales G (2013) Abiotic degradation of LDPE and LLDPE formulated with pro-oxidant additive. Polym Degrad Stabil 98:490–501

    Article  Google Scholar 

  36. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques-a review. Chemosphere 73:429–444

    CAS  Article  Google Scholar 

  37. Albertsson A, Barenstedt C, Karlsson S, Lindberg T (1995) Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer 36:3075–3083

    CAS  Article  Google Scholar 

  38. Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep-UK 7:1–13

    CAS  Article  Google Scholar 

  39. Teymouri Y, Kwamen R, Blümich B (2015) Aging and degradation of LDPE by compact NMR. Macromol Mater Eng 300:1063–1070

    CAS  Article  Google Scholar 

  40. Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2017) Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym Degrad Stabil 137:251–271

    CAS  Article  Google Scholar 

  41. Gu JD (2003) Microbiological deterioration and biodegradation of synthetic polymeric materials: recent research advances. Int Biodeter Biodeg 52:69–91

    CAS  Article  Google Scholar 

  42. Nguyen DM, Do TVV, Grillet AC, Thuc HH, Nhan C, Thuc H (2016) Biodegradability of polymer film based on low density polyethylene and cassava starch. Int Biodeterior Biodegradation 115:257–265

Download references

Acknowledgements

The authors thank CAPES (Financial Code—001) for scholarships, as well as PUCRS and Brasilata Company for technical and financial support, Laboratório Central de Microscopia e Microanálise (LabCEMM/PUCRS) for morphological analyzes and Laboratory of Dr. Marcelo Villar (PLAPIQUI/CONICET) for the GPC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeane Lima.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miranda, G., Pires, J., Souza, G. et al. Abiotic and biotic degradations of a LDPE blend in soil of South Brazil landfill. Iran Polym J 29, 1123–1135 (2020). https://doi.org/10.1007/s13726-020-00866-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00866-w

Keywords

  • LDPE
  • Biodegrading additive
  • Accelerated weathering
  • Biodeterioration
  • Biodegradation