Skip to main content
Log in

In situ functionalization of poly(butylene adipate-co-terephthalate) polyester with a multi-functional macromolecular additive

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Poly(butylene adipate-co-terephthalate) (PBAT) has been functionalized with Pluronic F127 as a secondary diol monomer by melt polycondensation. The variation of Pluronic content to max 12.2 wt% in the copolymer is investigated on microstructure analysis, molecular weight distribution, thermal properties, crystallinity, and thermo-responsive behavior. The microstructure in the Pluronic F127-functionalized PBAT (PPBAT) copolymer indicates that the amount of Pluronic unit which is attached to the PPBAT copolymers found to be increased from 5.9 to 9.1 to 12.2% (wt) with the feeding amount of 1.0 to 2.0 to 3.0 mmol, respectively. The weight average molecular weight has also found to increase from 23,555 to 43,841 g/mol in the PPBAT copolymers. The lowering of glass transition temperature has been also observed in the thermal analysis that indicates the improvement of the plasticization effect in the PPBAT copolymers with the increase of Pluronic from 0 to 12.2% (wt). Moreover, the crystallization behavior also indicates the disappearance of crystallization temperature and the appearance of cold crystallization temperature before melting with the increase of Pluronic content. The X-ray diffraction analysis further signifies the decrease in degree of crystallinity with an increase of Pluronic in PPBAT copolymers. The PPBAT copolymers display thermo-responsive behavior under physiological conditions due to the attachment of Pluronic comonomer onto the structural backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Royer SJ, Ferron S, Wilson ST, Karl DM (2018) Production of methane and ethylene from plastic in the environment. PLoS ONE 13:e0200574

    PubMed  PubMed Central  Google Scholar 

  2. Rigby M, Prinn RG, Fraser PJ, Simmonds PG, Langenfelds RL, Huang J, Cunnold DM, Steele LP, Krummel PB, Weiss RF, O'Doherty S, Salameh PK, Wang HJ, Harth CM, Mühle J, Porter LW (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35:1–6

    Google Scholar 

  3. Doppalapudi S, Jain A, Khan W, Domb AJ (2014) Biodegradable polymers: an overview. Polym Adv Technol 25:427–435

    CAS  Google Scholar 

  4. Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250

    CAS  Google Scholar 

  5. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504

    CAS  PubMed  Google Scholar 

  6. Mohamed RM, Yusoh K (2016) A review on the recent research of polycaprolactone (PCL). Adv Mater Res 1134:249–255

    Google Scholar 

  7. Chiulan I, Frone A, Brandabur C, Panaitescu D (2018) Recent advances in 3D printing of aliphatic polyesters. Bioengineering 5:2–19

    Google Scholar 

  8. Lee KB, Yoon KR, Woo SI, Choi IS (2003) Surface modification of poly(glycolic acid) (PGA) for biomedical applications. J Pharm Sci 92:933–937

    CAS  PubMed  Google Scholar 

  9. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95:2641–2647

    CAS  Google Scholar 

  10. Shah AA, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T (2014) Microbial degradation of aliphatic and aliphatic–aromatic co-polyesters. Appl Microbiol Biotechnol 98:3437–3447

    CAS  PubMed  Google Scholar 

  11. Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J Polym Sci Part A 40:4141–4157

    CAS  Google Scholar 

  12. Jian J, Xiangbin Z, Xianbo H (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT. Adv Ind Eng Polym Res 3:19–26

    Google Scholar 

  13. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7:199–207

    Google Scholar 

  14. Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2011) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. Synth Biodegrad Polym 245:91–136

    Google Scholar 

  15. Ferreira FV, Cividanes LS, Gouveia RF, Lona LM (2019) An overview on properties and applications of poly(butylene adipate-co-terephthalate)-PBAT based composites. Polym Eng Sci 59:7–15

    Google Scholar 

  16. Brandelero RPH, Grossmann MV, Yamashita F (2012) Films of starch and poly(butylene adipate-co-terephthalate) added of soybean oil (SO) and Tween 80. Carbohydr Polym 90:1452–1460

    CAS  PubMed  Google Scholar 

  17. Mohanty S, Nayak SK (2010) Biodegradable nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) with organically modified nanoclays. Int J Plast Technol 14:192–212

    CAS  Google Scholar 

  18. Bastarrachea L, Dhawan S, Sablani SS, Mah JH, Kang DH, Zhang J, Tang J (2010) Biodegradable poly(butylene adipate-co-terephthalate) films incorporated with Nisin: characterization and effectiveness against Listeria innocua. J Food Sci 75:215–224

    Google Scholar 

  19. Moustafa H, El-Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9:20132–20141

    CAS  PubMed  Google Scholar 

  20. Shankar S, Rhim JW (2016) Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT Food Sci Technol 72:149–156

    CAS  Google Scholar 

  21. Costa-Pinto AR, Salgado AJ, Correlo VM, Sol P, Bhattacharya M, Charbord P, Reis RL, Neves NM (2008) Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds. Tissue Eng Part A 14:1049–1057

    CAS  PubMed  Google Scholar 

  22. Wang A, Gan Y, Yu H, Liu Y, Zhang M, Cheng B, Wang F, Wang H, Yan J (2012) Improvement of the cytocompatibility of electrospun poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] mats by Ecoflex. J Biomed Mater Res A 100:1505–1511

    PubMed  Google Scholar 

  23. Santana-Melo GF, Rodrigues BVM, Da-silva E, Ricci R, Marciano FR, Webster TJ, Vasconcellos LMR, Lobo AO (2017) Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids Surf B Biointerfaces 155:544–552

    CAS  PubMed  Google Scholar 

  24. Díez-Pascual AM, Díez-Vicente AL (2015) Antimicrobial and sustainable food packaging based on poly(butylene adipate-co-terephthalate) and electrospun chitosan nanofibers. RSC Adv 5:93095–93107

    Google Scholar 

  25. Giri J, Lach R, Grellmann W, Susan MABH, Saiter JM, Henning S, Katiyar V, Adhikari R (2019) Compostable composites of wheat stalk micro-and nano-crystalline cellulose and poly(butylene adipate-co-terephthalate): surface properties and degradation behavior. J Appl Polym Sci 136:48149

    Google Scholar 

  26. Meng H, Hu J (2010) A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli. J Intell Mater Syst Struct 21:859–885

    CAS  Google Scholar 

  27. Osváth Z, Iván B (2017) The dependence of the cloud point, clearing point, and hysteresis of poly(N-isopropylacrylamide) on experimental conditions: the need for standardization of thermoresponsive transition determinations. Macromol Chem Phys 218:1600470

    Google Scholar 

  28. Hu J, Meng H, Li G, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21:53001–530024

    Google Scholar 

  29. Kim YJ, Matsunaga YT (2017) Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B 5:4307–4321

    CAS  PubMed  Google Scholar 

  30. Chen Y, An J, Zhong Q, Müller-Buschbaum P, Wang J (2017) Smart control of cotton fabric comfort by cross-linking thermo-responsive poly[2-(2-methoxyethoxy) ethoxyethyl methacrylate-co-ethylene glycol methacrylate]. Text Res J 87:1620–1630

    CAS  Google Scholar 

  31. Ye Y, Huang J, Wang X (2015) Fabrication of a self-cleaning surface via the thermosensitive copolymer brush of P (NIPAAm-PEGMA). ACS Appl Mater Interfaces 7:22128–22136

    CAS  PubMed  Google Scholar 

  32. Chen JP, Kuo CY, Lee WL (2012) Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Appl Surf Sci 262:95–101

    CAS  Google Scholar 

  33. De-silva BATT, Pascoalino LA, De-souza RL, Muniz EC, Curti PS (2020) Characterization of novel thermoresponsive poly(butylene adipate-co-terephthalate)/poly(N-isopropylacrylamide) electrospun fibers. Polym Bull 77:1157–1176

    Google Scholar 

  34. Yeh MY, Zhao JY, Hsieh YR, Lin JH, Chen FY, Chakravarthy RD, Chung PC, Lin HC, Hung SC (2017) Reverse thermo-responsive hydrogels prepared from Pluronic F127 and gelatin composite materials. RSC Adv 7:21252–21257

    CAS  Google Scholar 

  35. Tsitsilianis C (2010) Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 6:2372–2388

    CAS  Google Scholar 

  36. Luk VN, Mo GC, Wheeler AR (2008) Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir 24:6382–6389

    CAS  PubMed  Google Scholar 

  37. Du CH, Wu CJ, Wu LG (2012) Effects of Pluronic F127 on the polymorphism and thermoresponsive properties of PVDF blend membranes via immersion precipitation process. J Appl Polym Sci 124:330–337

    Google Scholar 

  38. Suntornnond R, Tan EYS, An J, Chua CK (2017) A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures. Sci Rep 7:16902–16913

    PubMed  PubMed Central  Google Scholar 

  39. Xiong XY, Tam KC, Gan LH (2003) Synthesis and aggregation behavior of Pluronic F127/poly(lactic acid) block copolymers in aqueous solutions. Macromolecules 36:9979–9985

    CAS  Google Scholar 

  40. Xiong XY, Tam KC, Gan LH (2006) Synthesis and thermally responsive properties of novel Pluronic F87/polycaprolactone (PCL) block copolymers with short PCL blocks. J Appl Polym Sci 100:4163–4172

    CAS  Google Scholar 

  41. Jaisankar V, Nanthini R, Karunanidhi M, Ravi A (2010) Study on biodegradable random copolyesters derived from 1,4-butane diol, terephthalic acid and adipic acid/sebacic acid. Asian J Chem 22:5077–5085

    CAS  Google Scholar 

  42. Su YL, Liu HZ, Wang J, Chen JY (2002) Study of salt effects on the micellization of PEO-PPO-PEO block copolymer in aqueous solution by FTIR spectroscopy. Langmuir 18:865–871

    CAS  Google Scholar 

  43. Ke Q, Liu Y, Liu H, Zhang Y, Hu Y, Wang J (2014) Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv 4:26398–26406

    CAS  Google Scholar 

  44. Cai Y, Lv J, Feng J (2013) Spectral characterization of four kinds of biodegradable plastics: poly(lactic Acid), poly(butylenesadipate-co-terephthalate), poly(hydroxybutyrate-co-hydroxyvalerate) and poly(butylenessuccinate) with FTIR and Raman spectroscopy. Polym Environ 21:108–114

    CAS  Google Scholar 

  45. Rahimi SK, Aeinehvand R, Kim K, Otaigbe JU (2017) Structure and biocompatibility of bioabsorbable nanocomposites of aliphatic–aromatic copolyester and cellulose nanocrystals. Biomacromol 18:2179–2194

    Google Scholar 

  46. Kelishady PD, Saadat E, Ravar F, Akbari H, Dorkoosh F (2015) Pluronic F127 polymeric micelles for co-delivery of paclitaxel and lapatinib against metastatic breast cancer: preparation, optimization and in vitro evaluation. Pharm Dev Technol 20:1009–1017

    Google Scholar 

  47. Metin U, Mallapragada SK, Altinkaya SA (2015) Responsive pentablock copolymers for siRNA delivery. RSC Adv 5:43515–43527

    Google Scholar 

  48. Ye X, Wu J, Oh JK, Winnik MA, Wu C (2003) Effect of pluronic surfactants on the polymer diffusion rate in poly(butyl methacrylate) latex films. Macromolecules 36:8886–8889

    CAS  Google Scholar 

  49. Zorba T, Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2007) Synthesis, characterization and thermal degradation mechanism of three poly(alkylene adipate)s: comparative study. Polym Degrad Stabil 92:222–230

    CAS  Google Scholar 

  50. Han J, Zhu Y, Hu J, Luo H, Yeung LY, Li W, Meng Q, Ye G, Zhang S, Fan Y (2012) Morphology, reversible phase crystallization, and thermal sensitive shape memory effect of cellulose whisker/SMPU nano-composites. J Appl Polym Sci 123:749–762

    CAS  Google Scholar 

  51. Xing Q, Ruch D, Dubois P, Wu L, Wang WJ (2017) Biodegradable and high-performance poly(butylene adipate-co-terephthalate)-lignin UV-blocking films. ACS Sustain Chem Eng 5:10342–10351

    CAS  Google Scholar 

  52. Wu S, Zhang Y, Han J, Xie Z, Xu J, Guo B (2017) Copolymerization with polyether segments improves the mechanical properties of biodegradable polyesters. ACS Omega 2:2639–2648

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wenchao L, Hu Y, Shi L, Zhang X, Xiong L, Zhang W, Ullah I (2018) Electrospinning of polycaprolactone/Pluronic F127 dissolved in glacial acetic acid: fibrous scaffolds fabrication, characterization and in vitro evaluation. J Biomater Sci Polym Ed 29:1155–1167

    Google Scholar 

  54. Bożena K, Gajda M, Górniak A, Owczarek A, Mucha I (2017) Pluronic F127 as a suitable carrier for preparing the imatinib base solid dispersions and its potential in development of a modified release dosage forms. J Therm Anal Calorim 130:383–390

    Google Scholar 

  55. Wang M, Luo MX, Ma D (1998) Dynamic mechanical behavior in the ethylene terephthalate–ethylene oxide copolymer with long soft segment as a shape memory material. Eur Polym J 34:1–5

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendrakumar Gupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 108341 kb)

Supplementary file2 (DOCX 1022 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, D., Cherian, A., Parab, A. et al. In situ functionalization of poly(butylene adipate-co-terephthalate) polyester with a multi-functional macromolecular additive. Iran Polym J 29, 1045–1055 (2020). https://doi.org/10.1007/s13726-020-00860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00860-2

Keywords

Navigation