Skip to main content
Log in

Robust composite coating with superior corrosion inhibitory performance on surgical grade 316L stainless steel in Ringer solution

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

316L stainless steel (SS) is used as an orthopedic implant biomaterial due to its properties such as superior tensile strength, fatigue strength, and fracture toughness. Although it possesses such remarkable properties, it is corroded in aggressive biofluids. Hence, with a view to combat corrosion of surgical grade 316L SS, 3-amino-5-mercapto-1,2,4-triazole (AMTa) and its Na-montmorillonite (Na-MMT) K10 clay composite were electropolymerized over its surface and its anti-corrosion performance was evaluated. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies (PDS) revealed the enhanced protective behavior of the composite compared to the polymer which was guaranteed by the results of chronoamperometric studies and atomic absorption spectroscopy. The functionalities of electrochemically synthesized p-AMTa and its Na-MMT composite films were characterized by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy results which supported the formation of the polymer by NH–NH and S–S linkages. The surface morphological studies of a bare and film-deposited 316L SS confirmed the protective layer formed over the SS surface. Further, the effect of concentration of monomer and Na-MMT on corrosion inhibition was also studied. Anticorrosive performance of the polymer and Na-MMT composite studied after 7 days of immersion in the Ringer solution revealed that composite-coated 316L SS could retain its protective performance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rajesh K, Rangaswamy MK, Zhang C, Haldar S, Kumarasamy M, Agarwal A, Roy P, Lahiri D (2019) Surface modified metallic orthopedic implant for sustained drug release and osteocompatibility. ACS Appl Bio Mater 2:4181–4192

    Article  CAS  Google Scholar 

  2. Kumar AM, Rajendran N (2013) Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO2 ceramic nanocomposite coatings on 316L SS for orthopedic implants. Ceram Int 39:5639–5650

    Article  Google Scholar 

  3. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention-a review. Recent Patents Corros Sci 2:40–54

    Article  CAS  Google Scholar 

  4. Balamurugan A, Rajeswari S, Balossier G, Rebelo AHS, Ferreira JMF (2008) Corrosion aspects of metallic implants—an overview. Mater Corros 59:855–869

    Article  CAS  Google Scholar 

  5. Nagarajan S, Mohana M, Sudhagar P, Raman V, Nishimura T, Kim S, Rajendran N (2012) Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility. ACS Appl Mater Interfaces 4:5134–5141

    Article  CAS  Google Scholar 

  6. Rajkumar G, Sethuraman MG (2013) Electrosynthesis of a novel poly (3-amino-1, 2, 4-triazole) + TiO2 hybrid composite on copper and its corrosion protection. Ind Eng Chem Res 52:15057–15065

    Article  CAS  Google Scholar 

  7. Balaji J, Sethuraman MG (2016) Corrosion protection of copper with 3-glycidoxypropyltrimethoxysilane-based sol–gel coating through 3-amino-5-mercapto-1, 2, 4-triazole doping. Res Chem Intermed 42:1315–1328

    Article  CAS  Google Scholar 

  8. Rajkumar G, Sethuraman MG (2015) Electrochemical synthesis of poly-3-amino-5-mercapto-1, 2, 4-triazole on copper and its protective effect in 3.5% NaCl medium. Res Chem Intermed 41:8041–8055

    Article  CAS  Google Scholar 

  9. Shabani-Nooshabadi M, Karimian-Taheri F (2015) Electrosynthesis of a polyaniline/zeolite nanocomposite coating on copper in a three-step process and the effect of current density on its corrosion protection performance. RSC Adv 5:96601–96610

    Article  CAS  Google Scholar 

  10. Huang TC, Hsieh CF, Yeh TC, Lai CL, Tsai MH, Yeh JM (2011) Comparative studies on corrosion protection properties of polyimide-silica and polyimide-clay composite materials. J Appl Polym Sci 119:548–557

    Article  CAS  Google Scholar 

  11. Abdullayev E, Abbasov V, Tursunbayeva A, Portnov V, Ibrahimov H, Mukhtarova G, Lvov Y (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Appl Mater Interfaces 5:4464–4471

    Article  CAS  Google Scholar 

  12. Hosseini MG, Jafari M, Najjar R (2011) Effect of polyaniline–montmorillonite nanocomposite powders addition on corrosion performance of epoxy coatings on Al 5000. Surf Coat Technol 206:280–286

    Article  CAS  Google Scholar 

  13. Castagno KR, Dalmoro V, Mauler RS, Azambuja DS (2010) Characterization and corrosion protection properties of polypyrrole/montmorillonite electropolymerized onto aluminium alloy 1100. J Polym Res 17:647–655

    Article  CAS  Google Scholar 

  14. Chang KC, Lai MC, Peng CW, Chen YT, Yeh JM, Lin CL, Yang JC (2006) Comparative studies on the corrosion protection effect of DBSA-doped polyaniline prepared from in situ emulsion polymerization in the presence of hydrophilic Na+-MMT and organophilic organo-MMT clay platelets. Electrochim Acta 51:5645–5653

    Article  CAS  Google Scholar 

  15. Van Hoang H, Holze R (2006) Electrochemical synthesis of polyaniline/montmorillonite nanocomposites and their characterization. Chem Mater 18:1976–1980

    Article  CAS  Google Scholar 

  16. Spence A, Robinson C, Hanson RE (2014) The effects of microstructural changes on montmorillonite–microbial interactions. J Mol Struct 1056:157–165

    Article  Google Scholar 

  17. Rajkumar G, Sethuraman MG (2016) A novel hybrid composite coating of poly-3-amino-5-mercapto-1, 2, 4-triazole/TiO2 on copper for corrosion protection. Iran Polym J 25:119–128

    Article  CAS  Google Scholar 

  18. Rajkumar G, Sethuraman MG (2014) Synthesis, characterization and corrosion protection of poly-4-methyl-3-mercapto-1, 2, 4-triazole/TiO2 composite on copper. Polym Bull 71:3249–3260

    Article  CAS  Google Scholar 

  19. Liu YC, Ger MD (2002) Modification of electropolymerized polypyrrole with Na+-montmorillonite. Chem Phys Lett 362:491–496

    Article  CAS  Google Scholar 

  20. Lee D, Char K, Lee SW, Park YW (2003) Structural changes of polyaniline/montmorillonite nanocomposites and their effects on physical properties. J Mater Chem 13:2942–2947

    Article  CAS  Google Scholar 

  21. Sherif ESM, Erasmus RM, Comins JD (2007) Corrosion of copper in aerated acidic pickling solutions and its inhibition by 3-amino-1, 2, 4-triazole-5-thiol. J Colloid Interface Sci 306:96–104

    Article  CAS  Google Scholar 

  22. Schelvis JP, Berka V, Babcock GT, Tsai AL (2002) Resonance Raman detection of the Fe-S bond in endothelial nitric oxide synthase. Biochemistry 41:5695–5701

    Article  CAS  Google Scholar 

  23. Bishop JL, Murad E (2004) Characterization of minerals and biogeochemical markers on Mars: a Raman and IR spectroscopic study of montmorillonite. J Raman Spectrosc 35:480–486

    Article  CAS  Google Scholar 

  24. Frost RL, Rintoul L (1996) Lattice vibrations of montmorillonite: an FT Raman and X-ray diffraction study. Appl Clay Sci 11:171–183

    Article  CAS  Google Scholar 

  25. Wang FF, Liu J, Li H, Liu CL, Yang RZ, Dong WS (2015) Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10. Green Chem 17:2455–2463

    Article  CAS  Google Scholar 

  26. Titantah JT, Lamoen D (2007) Carbon and nitrogen 1 s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diam Relat Mater 16:581–588

    Article  CAS  Google Scholar 

  27. Iliut M, Leordean C, Canpean V, Teodorescu CM, Astilean S (2013) A new green, ascorbic acid-assisted method for versatile synthesis of Au–graphene hybrids as efficient surface-enhanced Raman scattering platforms. J Mater Chem C 1:4094–4104

    Article  CAS  Google Scholar 

  28. Wrzosek B, Bukowska J (2007) Molecular structure of 3-amino-5-mercapto-1, 2, 4-triazole self-assembled monolayers on Ag and Au surfaces. J Phys Chem C 111:17397–17403

    Article  CAS  Google Scholar 

  29. Vinothkumar K, Sethuraman MG (2018) Corrosion inhibition ability of electropolymerised composite film of 2-amino-5-mercapto-1, 3, 4-thiadiazole/TiO2 deposited over the copper electrode in neutral medium. Mater Today Commun 14:27–39

    Article  CAS  Google Scholar 

  30. Wang Y, Yin M, Lin X, Li L, Li Z, Ren X, Sun Y (2019) Tailored synthesis of polymer-brush-grafted mesoporous silicas with N-halamine and quaternary ammonium groups for antimicrobial applications. J Colloid Interface Sci 533:604–611

    Article  CAS  Google Scholar 

  31. Vignesh RB, Sethuraman MG (2014) Enhancement of corrosion protection of 3-glycidoxypropyl trimethoxysilane-based sol–gel coating through methylthiourea doping. J Coat Technol Res 11:545–554

    Article  CAS  Google Scholar 

  32. Piromruen P, Kongparakul S, Prasassarakich P (2014) Synthesis of polyaniline/montmorillonite nanocomposites with an enhanced anticorrosive performance. Prog Org Coat 77:691–700

    Article  CAS  Google Scholar 

  33. Nagarajan S, Rajendran N (2009) Sol–gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications. J Sol–Gel Sci Technol 52:188–196

    Article  CAS  Google Scholar 

  34. Nagarajan S, Raman V, Rajendran N (2010) Synthesis and electrochemical characterization of porous niobium oxide coated 316L SS for orthopedic applications. Mater Chem Phys 119:363–366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CSIR EMR-II division for the financial support through the major research project (Ref. No: 01(2842)/16/EMR-II dated 12/05/2016) and also the authors thank the authorities of The Gandhigram Rural Institute (Deemed to be University), Gandhigram for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathur Gopalakrishnan Sethuraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinothkumar, K., Nivetha, M. & Sethuraman, M.G. Robust composite coating with superior corrosion inhibitory performance on surgical grade 316L stainless steel in Ringer solution. Iran Polym J 29, 919–931 (2020). https://doi.org/10.1007/s13726-020-00851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00851-3

Keywords

Navigation