Skip to main content
Log in

Tuning the polymer–graphene interfaces by picric acid molecules to improve the sensitivity of a prepared conductive polymer composite gas detector

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A new structure of a polymer composite was designed to be used as a vapor sensor for detection of a set of volatile organic compounds (VOCs), namely ethanol, methanol, isopropyl alcohol (IPA), toluene and water as moisture in the atmosphere. Picric acid was used for physical decoration of graphene (Gr), as a conductive filler, and then, the modified graphene (Gr.PA) was added to polyvinyl alcohol (PVA) to design a conductive polymer composite (CPC) sensitive layer for detection of polar vapor analytes. The Fourier transfer infrared spectroscopy (FTIR) was used to study the physical adsorption of picric acid molecules on the surface of Gr. The experimental results revealed that the sensitivity of the prepared CPC transducer was dramatically improved through the decoration of Gr surfaces with PA molecules. The enhanced sensitivity was related to the addition of –OH and –NO2 functional groups on the surface of Gr (due to picric acid molecules). Those polar functional groups increased the diffusion driving force of polar analytes into the polymer composite. On the other hand, upon adding PA molecules, Gr–Gr junctions were tuned as sensitive sites, and the adsorbed vapor molecules increased the distance of Gr platelets, which, consequently, decreased the electron tunneling conductivity of the prepared CPC. The experimental results also proved that one could change the electrical conductivity of Gr as a p-type semiconductor through adsorption of analyte molecules on its surface. All in all, the attained results demonstrated that tuning the conductive filler junctions could be regarded as an exceptional strategy to improve the sensitivity of CPC transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bearzotti A, Macagnano A, Papa P, Venditti I, Zampetti E (2017) A study of a QCM sensor based on pentacene for the detection of BTX vapors in air. Sens Actuators B 240:1160–1164

    Article  CAS  Google Scholar 

  2. Spinelle L, Gerboles M, Kok G, Persijn S, Sauerwald T (2017) Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 17:1520

    Article  CAS  PubMed Central  Google Scholar 

  3. Caron A, Redon N, Thevenet F, Hanoune B, Coddeville P (2016) Performances and limitations of electronic gas sensors to investigate an indoor air quality event. Build Environ 107:19–28

    Article  Google Scholar 

  4. Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39:47–62

    Article  CAS  Google Scholar 

  5. Esser B, Schnorr JM, Swager TM (2012) Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew Chem Int Ed 51:5752–5756

    Article  CAS  Google Scholar 

  6. Pan L, Zhang W, Zhu N, Mao S, Tu K (2014) Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry. Food Res Int 62:162–168

    Article  CAS  Google Scholar 

  7. Casalinuovo I, Di Pierro D, Coletta M, Di Francesco P (2006) Application of electronic noses for disease diagnosis and food spoilage detection. Sensors 6:1428–1439

    Article  PubMed Central  Google Scholar 

  8. Buszewski B, Kęsy M, Ligor T, Amann A (2007) Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr 21:553–566

    Article  CAS  PubMed  Google Scholar 

  9. Neethirajan S, Jayas D, Sadistap S (2009) Carbon dioxide (CO2) sensors for the agri-food industry—a review. Food Bioprocess Technol 2:115–121

    Article  CAS  Google Scholar 

  10. Tanguy NR, Thompson M, Yan N (2018) A review on advances in application of polyaniline for ammonia detection. Sens Actuators B 257:1044–1064

    Article  CAS  Google Scholar 

  11. Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS (1996) Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem Mater 8:2298–2312

    Article  CAS  Google Scholar 

  12. Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 229:206–217

    Article  CAS  Google Scholar 

  13. Slobodian P, Riha P, Lengálová A, Svoboda P, Sáha P (2011) Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon 49:2499–2507

    Article  CAS  Google Scholar 

  14. Wang T, Huang D, Yang Z, He G, Li X, Hu N, Yin G, He D, Zhang L (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. NanoMicro Lett 8:95–119

    PubMed  Google Scholar 

  15. Wang X, Li Y, Pionteck J, Zhou Z, Weng W, Luo X, Qin Z, Voit B, Zhu M (2018) Flexible poly (styrene-butadiene-styrene)/carbon nanotube fiber based vapor sensors with high sensitivity, wide detection range, and fast response. Sens Actuators B 256:896–904

    Article  CAS  Google Scholar 

  16. Fan Q, Qin Z, Villmow T, Pionteck J, Pötschke P, Wu Y, Voit B, Zhu M (2011) Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks. Sens Actuators B 156:63–70

    Article  CAS  Google Scholar 

  17. Feller JF, Lu J, Zhang K, Kumar B, Castro M, Gatt N, Choi HJ (2011) Novel architecture of carbon nanotube decorated poly (methyl methacrylate) microbead vapour sensors assembled by spray layer by layer. J Mater Chem 21:4142–4149

    Article  CAS  Google Scholar 

  18. Alizadeh T, Soltani LH (2013) Graphene/poly (methyl methacrylate) chemiresistor sensor for formaldehyde odor sensing. J Hazard Mater 248:401–406

    Article  PubMed  CAS  Google Scholar 

  19. Tripathi KM, Kim T, Losic D, Tung TT (2016) Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 110:97–129

    Article  CAS  Google Scholar 

  20. Molla-Abbasi P, Reza Ghaffarian S, Dashtimoghadam E (2016) Wrapping carbon nanotubes by biopolymer chains: role of nanointerfaces in detection of vapors in conductive polymer composite transducers. Polym Compos 37:2803–2810

    Article  CAS  Google Scholar 

  21. Qi H, Liu J, Pionteck J, Pötschke P, Mäder E (2015) Carbon nanotube–cellulose composite aerogels for vapour sensing. Sens Actuators B 213:20–26

    Article  CAS  Google Scholar 

  22. Bouvree A, Feller JF, Castro M, Grohens Y, Rinaudo M (2009) Conductive polymer nano-biocomposites (CPC): chitosan-carbon nanoparticle a good candidate to design polar vapour sensors. Sens Actuators B 138:138–147

    Article  CAS  Google Scholar 

  23. Tung TT, Nine MJ, Krebsz M, Pasinszki T, Coghlan CJ, Tran DN, Losic D (2017) Recent advances in sensing applications of graphene assemblies and their composites. Adv Funct Mater 27:1702891

    Article  CAS  Google Scholar 

  24. Castro M, Lu J, Bruzaud S, Kumar B, Feller JF (2009) Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors. Carbon 47:1930–1942

    Article  CAS  Google Scholar 

  25. He Q, Wu S, Yin Z, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3:1764–1772

    Article  CAS  Google Scholar 

  26. Yavari F, Koratkar N (2012) Graphene-based chemical sensors. J Phys Chem Lett 3:1746–1753

    Article  CAS  PubMed  Google Scholar 

  27. Huang L, Wang Z, Zhang J, Pu J, Lin Y, Xu S, Shen L, Chen Q, Shi W (2014) Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl Mater Interface 6:7426–7433

    Article  CAS  Google Scholar 

  28. Chen Z, Umar A, Wang S, Wang Y, Tian T, Shang Y, Fan Y, Qi Q, Xu D, Jiang L (2015) Supramolecular fabrication of multilevel graphene-based gas sensors with high NO2 sensibility. Nanoscale 7:10259–10266

    Article  CAS  PubMed  Google Scholar 

  29. Zheng Y, Lee D, Koo HY, Maeng S (2015) Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing. Carbon 81:54–62

    Article  CAS  Google Scholar 

  30. Yuan W, Liu A, Huang L, Li C, Shi G (2013) High-performance NO2 sensors based on chemically modified graphene. Adv Mater 25:766–771

    Article  CAS  PubMed  Google Scholar 

  31. Mann JA, Dichtel W (2013) Noncovalent functionalization of graphene by molecular and polymeric adsorbates. J Phys Chem Lett 4:2649–2657

    Article  CAS  Google Scholar 

  32. Georgakilas V, Tiwari JN, Kemp KC, Perman J, Bourlinos A, Kim K, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519

    Article  CAS  PubMed  Google Scholar 

  33. Emiru TF, Ayele DW (2017) Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt J Basic Appl Sci 4:74–79

    Article  Google Scholar 

  34. Parmar AK, Valand NN, Solanki KB, Menon SK (2016) Picric acid capped silver nanoparticles as a probe for colorimetric sensing of creatinine in human blood and cerebrospinal fluid samples. Analyst 141:1488–1498

    Article  CAS  PubMed  Google Scholar 

  35. Molla-Abbasi P, Shabanian M (2019) A bulky aromatic functional polyimide composite as a sensitive layer for the detection of organic compound biomarkers. Iran Polym J 28:203–211

    Article  CAS  Google Scholar 

  36. Molla-Abbasi P, Ghaffarian SR (2014) Decoration of carbon nanotubes by chitosan in a nanohybrid conductive polymer composite for detection of polar vapours. RSC Adv 4:30906–30913

    Article  CAS  Google Scholar 

  37. Hansen CM (2007) Solubility parameters: a user's handbook. CRC, Boca Raton

    Book  Google Scholar 

  38. Nag S, Castro M, Choudhary V, Feller JF (2017) Sulfonated poly (ether ether ketone)[SPEEK] nanocomposites based on hybrid nanocarbons for the detection and discrimination of some lung cancer VOC biomarkers. J Mater Chem B 5:348–359

    Article  CAS  PubMed  Google Scholar 

  39. Nag S, Duarte L, Bertrand E, Celton V, Castro M, Choudhary V, Guegan Ph, Feller JF (2014) Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. J Mater Chem B 2:6571–6579

    Article  CAS  PubMed  Google Scholar 

  40. Knite M, Shakale G, Klemenoks I, Ozols K, Teteris V (2007) Investigation of mechanism of organic solvent vapours sensing effect in polyisoprene-high structure carbon black composite. In: Paper presented at journal of physics: conference series, vol 93, no. 1

  41. Putri LK, Ong WJ, Chang WS, Chai SP (2015) Heteroatom doped graphene in photocatalysis: a review. Appl Surf Sci 358:2–14

    Article  CAS  Google Scholar 

  42. Wang Z, Nayak PK, Caraveo-Frescas JA, Alshareef HN (2016) Recent developments in p-type oxide semiconductor materials and devices. Adv Mater 28:3831–3892

    Article  CAS  PubMed  Google Scholar 

  43. Lee YH, Jang M, Lee MY, Kweon OY, Oh JH (2017) Flexible field-effect transistor-type sensors based on conjugated molecules. Chemistry 3:724–763

    Article  CAS  Google Scholar 

  44. Kumar B, Castro M, Feller JF (2012) Controlled conductive junction gap for chitosan–carbon nanotube quantum resistive vapour sensors. J Mater Chem 22:10656–10664

    Article  CAS  Google Scholar 

  45. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas andorganic vapor detection. Nano Lett 3:929–933

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Molla-Abbasi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, E., Aghamiri, S.F., Molla-Abbasi, P. et al. Tuning the polymer–graphene interfaces by picric acid molecules to improve the sensitivity of a prepared conductive polymer composite gas detector. Iran Polym J 29, 341–350 (2020). https://doi.org/10.1007/s13726-020-00800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00800-0

Keywords

Navigation