Advertisement

Physical and thermomechanical characterization of the novel aluminum silicon carbide-reinforced polymer nanocomposites

  • H. Mohit
  • V. Arul Mozhi SelvanEmail author
Original Research
  • 26 Downloads

Abstract

In the present work, the aluminum silicon carbide nanoparticle (Al–SiC NP)-reinforced polymer composites were fabricated via ultrasonic assisted wet layup method to improve the physical, mechanical, and thermal properties of the epoxy polymer. The experimental design was selected based on the response surface methodology (central composites design) to optimize the effect of both Al–SiC NP concentration (2.93–17.07 wt%) and sonication time (47.57–132.43 min). From the analysis of variance (ANOVA) results, it was found that the Al–SiC NP concentration and sonication time played significant roles on the mechanical properties. To simultaneously maximize the flexural strength, the optimal values of Al–SiC NP concentration and sonication time were found to be 10 wt% and 120 min, respectively. From the normal distribution curve, it was found that there is a good agreement between experimental results and developed central composite design (CCD) model. Addition of Al–SiC NPs under optimum condition (10 wt%) enhanced the overall tensile, compression and flexural properties by 1.98, 1.08, and 2.22 times, respectively than those of the neat polymer. Under optimum condition, the glass transition temperature and thermal stability of Al–SiC/epoxy nanocomposites were found to be higher than those of the pristine epoxy composite. Microstructural analysis also confirmed the uniform dispersion and stronger interfacial bonds within the epoxy matrix, which improved physical and thermomechanical properties.

Keywords

Al–SiC NP Coefficient of thermal expansion Epoxy nanocomposite Mechanical properties Storage flexural modulus 

Supplementary material

13726_2019_746_MOESM1_ESM.docx (69 kb)
Supplementary file1 (DOCX 69 kb)

References

  1. 1.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  2. 2.
    Gkikas G, Barkoula N-M, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos Part B Eng 43:2697–2705CrossRefGoogle Scholar
  3. 3.
    Carbaleira P, Haupert F (2010) Toughening effects of titanium dioxide nanoparticles on TiO2/epoxy resin nanocomposites. Polym Compos 31:1241–1246Google Scholar
  4. 4.
    Ghosh PK, Pathak A, Goyat MS, Halder S (2012) Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/TiO2 nanocomposite. J Reinf Plast Compos 17:1180–1188CrossRefGoogle Scholar
  5. 5.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189CrossRefGoogle Scholar
  6. 6.
    Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M (2016) Properties of polymer composites used in high-voltage applications. Polymers 8:173.  https://doi.org/10.3390/polym8050173 CrossRefGoogle Scholar
  7. 7.
    Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Metal-polymer nanocomposites for functional applications. AdvEng Mater 12:1177–1190Google Scholar
  8. 8.
    Pramanik S, Das P (2019) In : Karak N (ed) Nanomaterials and polymer nanocomposites raw materials to applications. Elsevier, NetherlandsGoogle Scholar
  9. 9.
    Lin B, Gelevs GA, Haber JA, Sundararaj U (2007) Electrical, rheological, and mechanical properties of polystyrene/copper nano wire nanocomposites. Ind Eng Chem Res 46:2481–2487CrossRefGoogle Scholar
  10. 10.
    Bae Y-H, Yu M-J, Vu MC, Choi WK, Kim S-R (2018) Synergistic effects of segregated network by polymethlmethacrylate beads and sintering of copper nanoparticles on thermal and electrical properties of epoxy composites. Compos Sci Technol 155:144–150CrossRefGoogle Scholar
  11. 11.
    Singh SK, Singh S, Kumar A, Jain A (2017) Thermo-mechanical behavior of TiO2 dispersed epoxy composites. Eng Fract Mech 184:241–248CrossRefGoogle Scholar
  12. 12.
    Xiao C, Tan Y, Yang X, Xu T, Wang L, Qi Z (2018) Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2 particles and multi-walled carbon nanotubes. Chem Phys Lett 695:34–43CrossRefGoogle Scholar
  13. 13.
    Suresh S, Moorthi NSV, Vettivel SC, Selvakumar N (2014) Mechanical behavior and wear prediction of stir cast Al-TiB2 composites using response surface methodology. Mater Des 59:383–396CrossRefGoogle Scholar
  14. 14.
    Cao G, Choi H, Oportus J, Konishi H, Li X (2008) Study on tensile properties and microstructure of cast AZ91D/AlN composites. Mater Sci Eng A 494:127–131CrossRefGoogle Scholar
  15. 15.
    Choi SM, Awaji M (2005) Nanocomposites—a new material design concept. Sci Technol Adv Mater 6:2–10CrossRefGoogle Scholar
  16. 16.
    Aravind R, Saravanan M, Baradeswaran A, Vettivel SC, Suresh S (2016) Tribological and surface behavior of AA 6061/Al2O3/nano graphite hybrid composite using stir casting. J Bal Tribol Assoc 22:2218–2226Google Scholar
  17. 17.
    Sajjadi SA, Ezatpour HR, Beygi H (2011) Microstructure and mechanical properties of Al-Al2O3 micro and nanocomposites fabricated by stir casting. Mater Sci Eng A 528:8765–8771CrossRefGoogle Scholar
  18. 18.
    Wang XJ, Wang NZ, Wang LY, Hu XS, Wu K, Wang YQ, Huang YD (2014) Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater Des 57:638–645CrossRefGoogle Scholar
  19. 19.
    Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y (2014) Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55:921–928CrossRefGoogle Scholar
  20. 20.
    Manigandan K, Srivatsan TS, Quick T (2012) Influence of silicon carbide particulates on tensile fracture behavior of an aluminum alloy. Mater Sci Eng A 534:711–715CrossRefGoogle Scholar
  21. 21.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRefGoogle Scholar
  22. 22.
    Carreño-Gallardo C, Estrada-Guel I, López-Meléndez C, Martínez-Sánchez R (2014) Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill. J Alloys Comp 586:S68–S72CrossRefGoogle Scholar
  23. 23.
    Ghasemi FA, Ghasemi I, Menbari S, Ayaz M, Ashori A (2016) Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. Polym Test 53:283–292CrossRefGoogle Scholar
  24. 24.
    Chieng BW, Ibrahim NA, WanYunus WMZ (2012) Optimization of tensile strength of poly(lactic acid)/graphene nanocomposites using response surface methodology. Polym Plast Technol Eng 51:791–799CrossRefGoogle Scholar
  25. 25.
    Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRefGoogle Scholar
  26. 26.
    Chieng BW, Ibrahim NA, WanYunus WMZ, Hussein MZ (2014) Poly(lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104CrossRefGoogle Scholar
  27. 27.
    Montazeri A, Khavandi A, Javadpour J, Tcharkhtchi A (2011) An investigation on the effect of sonication time and dispersing medium on the mechanical properties of MWCNT/epoxy nanocomposites. Adv Mater Res 264–265:1954–1959CrossRefGoogle Scholar
  28. 28.
    Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842CrossRefGoogle Scholar
  29. 29.
    Liang YL, Pearson RA (2009) Toughening mechanisms in epoxy-silica nanocomposites (ESNs). Polymer 50:4895–4905CrossRefGoogle Scholar
  30. 30.
    Yao H, Hawkins SA, Sue H-J (2017) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Wang Y, Yu J, Chen L, Zhu J, Hu Z (2014) Tuning the interface of graphene platelets/ epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55:4990–5000CrossRefGoogle Scholar
  32. 32.
    Zheng W, Chen WG, Zhao Q, Ren SX, Fu YQ (2019) Interfacial structures and mechanisms for strengthening and enhanced conductivity of graphene/epoxy nanocomposites. Polymer 163:171–177CrossRefGoogle Scholar
  33. 33.
    Bazrgari D, Moztarzadeh F, Sabbagh-Alvani AA, Rasoulianboroujeni M, Tahriri M, Tayebi L (2018) Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceramics Int 44:1220–1224CrossRefGoogle Scholar
  34. 34.
    Yamini S, Young RJ (1979) Crack propagation in and fractography of epoxy resins. J Mater Sci 14:1609–1618CrossRefGoogle Scholar
  35. 35.
    Yamini S, Young RJ (1977) Stability of crack propagation in epoxy resins. Polymer 18:1075–1080CrossRefGoogle Scholar
  36. 36.
    Ferriera FV, Brito FS, Franceschi W, Simonetti EAN, Cividanes LS, Chipara M, Lozano K (2018) Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surf Interface 10:100–109CrossRefGoogle Scholar
  37. 37.
    Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL, Hollertz R, Nesch FA, Chu BTT (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10CrossRefGoogle Scholar
  38. 38.
    Francisco W, Ferreira FV, Ferreira EV, Cividanes LS, Coutinho AR, Thim GP (2015) Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite. J Aerosp Technol Manage 7:289–293CrossRefGoogle Scholar
  39. 39.
    Ribeiro H, Da Silva WM, Neves JC, Calado HDR, Paniago R, Seara LM, Camarano DDM, Silva GG (2015) Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polym Test 43:182–192CrossRefGoogle Scholar
  40. 40.
    Jia X, Zheng J, Lin S, Li W, Cai Q, Sui G, Yang X (2015) Highly moisture-resistant epoxy composites: an approach based on liquid nano-reinforcement containing well-dispersed activated montmorillonite. RSC Adv 5:44853–44864CrossRefGoogle Scholar
  41. 41.
    Tao Q, Su LN, Frost RL, He HP, Thang BKG (2014) Effect of functionalized kaolinite on the curing kinetics of cycloaliphatic epoxy/anhydride system. Appl Clay Sci 95:317–322CrossRefGoogle Scholar
  42. 42.
    Su L, Zeng X, He H, Tao Q, Komarneni S (2017) Preparation of functionalized kaolinite/ epoxy resin nanocomposites with enhanced thermal properties. Appl Clay Sci 148:103–108CrossRefGoogle Scholar
  43. 43.
    Suresh S, Saravanan P, Jayamoorthy K, Kumar SA, Karthikeyan S (2016) Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater Sci Eng C 64:286–292CrossRefGoogle Scholar
  44. 44.
    Chan M-I, Lau K-T, Wong TT, Cardona F (2011) Interfacial bonding characteristic of nanoclay/polymer composites. Appl Surf Sci 285:860–864CrossRefGoogle Scholar
  45. 45.
    Nie W, Liu J, Liu W, Wang J, Tang T (2015) Decomposition of waste carbon fiber reinforced epoxy resin composites in molten potassium hydroxide. Polym Degrad Stab 111:247–256CrossRefGoogle Scholar
  46. 46.
    Stankovich S, Piner RD, Nguyen SBT, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347CrossRefGoogle Scholar
  47. 47.
    Park S, Lee K-S, Bozoklu G, Cai W, Nguyen SBT, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical via chemical cross-linking. ACS Nano 2:572–578CrossRefGoogle Scholar
  48. 48.
    Park S, Dikin DA, Nguyen SBT, Ruoff RS (2009) Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem C 113:15801–15804CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci 285:855–863CrossRefGoogle Scholar
  50. 50.
    Yahia IS, Mohammed MI, Nawar AM (2019) Multifunction applications of TiO2/poly(vinyl alcohol) nanocomposites for laser attenuation applications. Phys B Phys Cond Matt 556:48–60CrossRefGoogle Scholar
  51. 51.
    Ahmad J, Deshmukh K, Habib M, Hägg MB (2014) Influence of TiO2 nanoparticles on the morphological, thermal and solution properties of PVA/TiO2 nanocomposite membranes. Arab J Sci Eng 39:6805–6814CrossRefGoogle Scholar
  52. 52.
    Li W, Liang R, Hu A, Huang Z, Zhou YN (2014) Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv 4:36959–36966CrossRefGoogle Scholar
  53. 53.
    Praveena SD, Ravindrachary V, Bhajantri RF, Ismayil A (2016) Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym Compos 37:987–997CrossRefGoogle Scholar
  54. 54.
    More SS, Dhokane RJ, Mohril SV (2016) Study on structural characterization and dielectric properties of PVA–TiO2 composite. IOSR J Appl Phys 8:28–32Google Scholar
  55. 55.
    Rafiee M, Nitzsche F, Laliberte J, Hind S, Robitaille F, Labrosse MR (2019) Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide, and reduced graphene-oxide. Compos Part B Eng 164:1–9CrossRefGoogle Scholar
  56. 56.
    Pathak AK, Kumar V, Sharma S, Yokozeki T, Dhakate SR (2019) Improved thermomechanical and electrical properties of reduced graphene oxide reinforced polyaniline-dodecylbenzenesulfonic acid/divinylbenzene nanocomposites. J Colloid Interface Sci 533:548–560CrossRefGoogle Scholar
  57. 57.
    Teng CC, Ma C-CM, Lu C-H, Yang S-Y, Lee S-H, Hsiao M-C, Yen M-Y, Chiou K-C, Lee T-M (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116CrossRefGoogle Scholar
  58. 58.
    El-Shafai NM, El-Khouly ME, El-Kemary M, Ramadan MS, Derbalah AS, Masoud MS (2019) Fabrication and characterization of graphene oxide-titanium dioxide nanocomposite for degradation of some toxic insecticides. J Ind Eng Chem 69:315–323CrossRefGoogle Scholar
  59. 59.
    Gersappe D (2002) Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett 89:058301.  https://doi.org/10.1103/PhysRevLett.89.058301 CrossRefGoogle Scholar
  60. 60.
    Zhao X, Li Y, Chen W, Li S, Zhao Y, Du S (2019) Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization. Compos Sci Technol 171:180–189CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations