A novel approach in blending natural rubber latex with siliceous earth nanoparticles

  • Jing ChenEmail author
  • Song Chen
  • Tianming Gao
  • Lijun Gao
  • Mubiao Xie
  • Rongkan Pan
  • Jieping Zhong
  • Xiaohua Cui
Original Research


Siliceous earth (SE), a kind of volcanic ash, was formed more than 100 million years ago with a special crystal structure and morphology. In this work, SE was first used as filler to blend with natural rubber (NR) latex, and then an improved process was employed to build up a kind of sacrificial bond to prepare NR composites with SE loadings 0–10 per hundred rubber (phr). X-ray diffractometry, Fourier-transform infrared spectroscopy and scanning electron microscopy were employed to determine the structure and morphologies of NR composite films. Furthermore, to investigate the effect of SE loading on mechanical properties of films, tear and tensile tests were applied. The NR latex, reinforced with 2–10 phr SE nanoparticles, showed 14.9–38.1% improvement in tensile strength and 109.2–345.3% improvement in 500% modulus when compared to pure NR film. The tensile strength and tear strength of NR composite films reached 34 MPa and 55 N/mm, respectively, when 6 phr SE was added. The results of thermogravimetric analysis indicated that thermal decomposition temperature of the NR composite films increased with increase in SE loading. The results of Mooney–Rivlin equation and Lorenze–Park equation showed that stronger filler/rubber interfacial interactions exist between SE particles and NR molecular chains. The improvement of NR properties was resulted from good filler–polymer interactions and uniformly dispersed SE particles.


Natural rubber latex Siliceous earth Mechanical properties Filler Rubber interfacial interactions Crosslink density 



This work was supported financially by Key programs of Lingnan Normal University (LZL1807), Natural Science Foundation of Guangdong Province (2016A030307020, 2015A030313778), the Scientific and Technological Innovation Project Foundation in Higher Education of Guangdong (2013KJCX0122), Characteristic Innovation Project of Innovation and Strengthening of Higher Education in Guangdong (2016KTSCX080), and the Research Group of Rare Earth Resource Exploiting and Luminescent Material (2017KCXTD022).


  1. 1.
    Pojanavaraphan T, Magaraphan R (2008) Prevulcanized natural rubber latex/clay aerogel nanocomposites. Eur Polym J 44:1968–1977CrossRefGoogle Scholar
  2. 2.
    Lee YH, Cho M, Nam JD, Lee Y (2018) Effect of ZnO particle sizes on thermal aging behavior of natural rubber vulcanizates. Polym Degrad Stab 148:50–55CrossRefGoogle Scholar
  3. 3.
    Somaratne MCW, Liyanage NMVK, Walpalage S (2014) Contribution of hydrogen and/or covalent bonds on reinforcement of natural rubber latex films with surface modified silica. J Appl Polym Sci 131:40380CrossRefGoogle Scholar
  4. 4.
    Cai HH, Li SD, Tian GR, Wang HB, Wang JH (2010) Reinforcement of natural rubber latex film by ultrafine calcium carbonate. J Appl Polym Sci 87:982–985CrossRefGoogle Scholar
  5. 5.
    Hamran N, Rashid AA (2017) Effect of combination ultrasonic and ball milling techniques of commercial fillers dispersion on mechanical properties of natural rubber (NR) latex films. Am Inst Phys Conf Ser 1865:7–89Google Scholar
  6. 6.
    Hosseinmardi A, Annamalai PK, Wang L, Martin D, Amiralian N (2017) Reinforcement of natural rubber latex using lignocellulosic nanofibers isolated from spinifex grass. Nanoscale 9:9510–9519CrossRefGoogle Scholar
  7. 7.
    On NK, Rashid AA, Nazlan MMM, Hamdan H (2012) Thermal and mechanical behavior of natural rubber latex-silica aerogel film. J Appl Polym Sci 124:3108–3116CrossRefGoogle Scholar
  8. 8.
    Peng Z, Kong LX, Li SD, Chen Y, Huang MF (2007) Self-assembled natural rubber/silica nanocomposites: its preparation and characterization. Compos Sci Technol 67:3130–3139CrossRefGoogle Scholar
  9. 9.
    Ikeda Y, Tohsan A (2014) Stepwise strain-induced crystallization of soft composites prepared from natural rubber latex and silica generated in situ. Colloid Polym Sci 292:567–577CrossRefGoogle Scholar
  10. 10.
    Li Y, Han BY, Wen SP, LuY L, Yang HB, Zhang LQ, Liu L (2014) Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites. Structural change and interfacial interaction in blended rubber composites filled with silica–kaolin hybrid fillers: a Fourier transform infrared spectroscopic study. Compos A 62:52–59CrossRefGoogle Scholar
  11. 11.
    Le D, Samart C, Yoosuk B, Guan G, Kongparakul S (2017) One-step latex compounding method for producing composites of natural rubber/epoxidized natural rubber/aminosilane-functionalized montmorillonite: enhancement of tensile strength and oil resistance. Polym Int 66:1064–1073CrossRefGoogle Scholar
  12. 12.
    Wang S, Tian X, Sun J, Liu J, Duan J (2016) Morphology and mechanical properties of natural rubber latex films modified by exfoliated Na-montmorillonite/polyethyleneimine-g-poly (methyl methacrylate) nanocomposites. J Appl Polym Sci 133:43961Google Scholar
  13. 13.
    Mitra S, Chattopadhyay S, Bhowmick AK (2010) Preparation and characterization of elastomer-based nanocomposite gels using a unique latex blending technique. J Appl Polym Sci 118:81–90CrossRefGoogle Scholar
  14. 14.
    Ramírez-Hernández A, Aparicio-Saguilán A, Reynoso-Meza G, Carrillo-Ahumada J (2016) Multi-objective optimization of process conditions in the manufacturing of banana (Musa paradisiaca L.) starch/natural rubber films. Carbohydr Polym 157:1125–1133CrossRefGoogle Scholar
  15. 15.
    Peng Z, Feng C, Luo Y, Li Y, Kong LX (2010) Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques. Carbon 48:4497–4503CrossRefGoogle Scholar
  16. 16.
    Lei J (2017) Reinforcement effect of soy protein nanoparticles in amine-modified natural rubber latex. Ind Crop Prod 105:53–62CrossRefGoogle Scholar
  17. 17.
    Zhao FC, Wu AB, Zhang LY, Niu CQ, Wang XH, Chen KM (2016) Preparation of slow-released films based on the natural rubber latex modified by cassava starch. Mater Sci Forum 848:152–159CrossRefGoogle Scholar
  18. 18.
    Kawano A, Yamamoto K, Kadokawa JI (2017) Preparation of self-assembled chitin nanofiber-natural rubber composite sheets and porous materials. Biomolecules 7:7030047CrossRefGoogle Scholar
  19. 19.
    Mohamed A, Ardyani T, Bakar SA, Sagisaka M, Umetsu Y, Hamon JJ, Rahim BA, Esa SR, Khalil HA, Mamat MH, King S (2018) Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity. J Colloid Interf Sci 516:34–47CrossRefGoogle Scholar
  20. 20.
    Othman N, Muttalib SNA, Ismail NI (2017) The effect of surface modification on the properties of palygorskite filled natural rubber nanocomposite. Macromol Symp 371:35–43CrossRefGoogle Scholar
  21. 21.
    Sisodia MS, Singh UK, Lashkari G, Shukla PN, Shukla AD, Bhandari N (2005) Mineralogy and trace element chemistry of the siliceous earth of barmer basin, rajasthan: evidence for a volcanic origin. J Earth Syst Sci 114:111–124CrossRefGoogle Scholar
  22. 22.
    Wiphawadee PD, Claudia K, Norbert V, Anoma T, Charoen N (2018) A comparative study of rice husk ash and siliceous earth as reinforcing fillers in epoxidized natural rubber composites. Polym Compos 39:414–426CrossRefGoogle Scholar
  23. 23.
    Chen J, Zhong JP, Li SD, Wang BB, Pan RK, Gao LJ (2018) Mechanical properties of siliceous earth/natural rubber composites. Polym Eng Sci 58:1043–1052CrossRefGoogle Scholar
  24. 24.
    Chen J, Li SD, Zhong JP, Wang BB, Pan RK, Wang Y (2017) The effect of epoxidized natural rubber on mechanical properties of siliceous earth/natural rubber composites. Polym Bull 74:1–21CrossRefGoogle Scholar
  25. 25.
    Flory PJ, Rehner JJ (1943) Statistical mechanics of cross-linked polymer networks I. Rubber like elasticity. J Chem Phys 11:512–520CrossRefGoogle Scholar
  26. 26.
    Flory PJ, Rehner JJ (1943) Statistical mechanics of cross-linked polymer networks II. J Chem Phys 11:521–526CrossRefGoogle Scholar
  27. 27.
    Vieyres A, Pérezaparicio R, Albouy PA, Sanseau O, Saalwächter K, Long DR (2013) Sulfur-cured natural rubber elastomer networks: correlating cross-link density, chain orientation, and mechanical response by combined techniques. Macromolecules 46:889–899CrossRefGoogle Scholar
  28. 28.
    Sunintaboon P, Duangphet S, Tangboriboonrat P (2009) Polyethyleneimine-functionalized poly(methyl methacrylate) colloidal nanoparticles for directly coating natural rubber sheet. Colloid Surf A 350:114–120CrossRefGoogle Scholar
  29. 29.
    Fu X, Huang C, Zhu Y, Huang GS, Wu JR (2019) Characterizing the naturally occurring sacrificial bond within natural rubber. Polymer 161:41–48CrossRefGoogle Scholar
  30. 30.
    Guidelli EJ, Ramos AP, Zaniquelli MED, Baffa O (2011) Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim Acta A 82:140–145CrossRefGoogle Scholar
  31. 31.
    Mahittikul A, Prasassarakich P, Rempel GL (2009) Hydrogenation of natural rubber latex in the presence of [Ir(cod)(PCy3)(py)]PF6. J Mol Catal A Chem 297:135–141CrossRefGoogle Scholar
  32. 32.
    Peddini S, Bosnyak C, Henderson N, Ellison C, Paul D (2015) Nanocomposites from styrene–butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT). Part 2: mechanical properties. Polymer 56:443–451CrossRefGoogle Scholar
  33. 33.
    Barghamadi M, Karrabi M, Ghoreishy MHR, Mohammadian-Gezaz S (2019) Effects of two types of nanoparticles on the cure, rheological, and mechanical properties of rubber nanocomposites based on the NBR/PVC blends. J Appl Polym Sci 136:47550CrossRefGoogle Scholar
  34. 34.
    Rooj S, Das A, Heinrich G (2011) Tube-like natural halloysite/fluoro elastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur Polym J 47:1746–1755CrossRefGoogle Scholar
  35. 35.
    He F, Yuan T, Li C, Sun L, Liao S (2018) Interfacial interactions and properties of natural rubber–silica composites with liquid natural rubber as a compatibilizer and prepared by a wet compounding method. J Appl Polym Sci 135:46457CrossRefGoogle Scholar
  36. 36.
    Huang Y, Schadler LS (2017) Understanding the strain-dependent dielectric behavior of carbon black reinforced natural rubber—an interfacial or bulk phenomenon. Compos Sci Technol 142:91–97CrossRefGoogle Scholar
  37. 37.
    Lorenz O, Parks CR (1961) The crosslinking efficiency of some vulcanizing agents in natural rubber. J Polym Sci 50:299–312CrossRefGoogle Scholar
  38. 38.
    Sookyung U, Thaijaroen W, Nakason C (2014) Influence of modifying organoclay on the properties of natural rubber/organoclay nanocomposites. J Compos Mater 48:1959–1970CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education InstitutesLingnan Normal UniversityZhanjiangPeople’s Republic of China
  2. 2.College of Life Science and TechnologyUniversity of JinanGuangzhouPeople’s Republic of China
  3. 3.Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural AffairsAgricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural SciencesGuangdongPeople’s Republic of China

Personalised recommendations