Skip to main content
Log in

The effect of graphene nanoplatelets on dynamic properties, crystallization, and morphology of a biodegradable blend of poly(lactic acid)/thermoplastic starch

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Based on the capabilities of nanographenes in improving the properties of polymeric blends, the effects of graphene nanoplatelets on compatibility, morphology, and crystallinity of the biodegradable thermoplastic starch/poly(lactic acid) (TPS/PLA) blends have been investigated. The localization of graphene nanoplatelets has also been predicted by wetting coefficients. TPS was first prepared and added in various concentrations to the PLA melted in an internal mixer instrument. After that, various amounts of graphene nanoplatelets as 0, 1, 2, and 3 wt% were added to the PLA/TPS blends at two different 90/10 and 70/30 weight compositions. The blends were examined by DMTA, SEM, and DSC tests. The wetting coefficient was evaluated by contact angle measurements to predict the dispersion and localization of graphene nanoplatelets, and also to confirm the predicted results with those obtained by other tests. DMTA results demonstrated that the addition of 1 wt% graphene nanoplatelets into the PLA/TPS blend has increased the compatibility of the two phases. SEM images revealed the dependence of the TPS-dispersed phase particles on the blend composition and amount of graphene nanoplatelets. DSC thermograms showed a reduction in cold crystallization temperature to zero due to the addition of graphene nanoparticles to PLA/TPS blends. Based on the wetting coefficient values, the localization of graphene nanoplatelets was found to be at the interface of PLA and TPS phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Manafi P, Ghasemi I, Karrabi M, Azizi H, Ehsaninamin P (2014) Effect of graphene nanoplatelets on crystallization kinetics of poly(lactic acid). Soft Mater 12:433–444

    Article  CAS  Google Scholar 

  2. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  3. Mehta R, Kumar V, Bhunia H, Upadhyay S (2005) Synthesis of poly(lactic acid): a review. J Macromol Sci Part C Polym Rev 45:325–349

    Article  CAS  Google Scholar 

  4. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  PubMed  Google Scholar 

  5. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B Polym Phys 49:1051–1083

    Article  CAS  Google Scholar 

  6. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  7. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  8. Mihai M, Huneault MA, Favis BD, Li H (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci 7:907–920

    Article  CAS  PubMed  Google Scholar 

  9. Rhim J-W, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433

    Article  CAS  PubMed  Google Scholar 

  10. Tapia-Blácido DR, do Amaral Sobral PJ, Menegalli FC (2011) Optimization of amaranth flour films plasticized with glycerol and sorbitol by multi-response analysis. LWT Food Sci Technol 44:1731–1738

    Article  CAS  Google Scholar 

  11. Yang J-H, Yu J-G, Ma X-F (2006) Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS). Carbohydr Polym 66:110–116

    Article  CAS  Google Scholar 

  12. Da Róz A, Carvalho A, Gandini A, Curvelo A (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424

    Article  CAS  Google Scholar 

  13. Xiaofei M, Jiugao Y, Jin F (2004) Urea and formamide as a mixed plasticizer for thermoplastic starch. Polym Int 53:1780–1785

    Article  CAS  Google Scholar 

  14. Li H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119:2439–2448

    Article  CAS  Google Scholar 

  15. Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–280

    Article  CAS  Google Scholar 

  16. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  17. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146

    Article  CAS  Google Scholar 

  18. Reghat M, Ehsani Namin P, Azizi H, Ghasemi I, Karrabi M (2017) Shear-induced crystallization of poly(lactic acid)/graphene nanocomposite. Polym Sci Technol 5:413–425

    Google Scholar 

  19. Terrones Maldonado M, Martín Cadiz O, González González M, Pozuelo de Diego J, Serrano Prieto B, Cabanelas Valcárcel JC, Vega-Diaz SM, Baselga Llidó J (2011) Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater 44:5302–5310

    Article  CAS  Google Scholar 

  20. Norazlina H, Kamal Y (2015) Graphene modifications in polylactic acid nanocomposites: a review. Polym Bull 72:931–961

    Article  CAS  Google Scholar 

  21. Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46

    Article  CAS  Google Scholar 

  22. Wu Z, Huang Y, Xiao L, Lin D, Yang Y, Wang H, Yang Y, Wu D, Chen H, Zhang Q (2019) Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. Int J Biol Macromol 123:569–575

    Article  CAS  PubMed  Google Scholar 

  23. Righetti MC, Cinelli P, Mallegni N, Massa CA, Aliotta L, Lazzeri A (2019) Thermal, mechanical, viscoelastic and morphological properties of poly(lactic acid) based biocomposites with potato pulp powder treated with waxes. Materials 12:990

    Article  PubMed Central  Google Scholar 

  24. Lima EMB, Lima AM, Minguita APS, Rojas dos Santos NR, Pereira ICS, Neves TTM, da Costa Gonçalves LF, Moreira APD, Middea A, Neumann R (2019) Poly(lactic acid) biocomposites with mango waste and organo-montmorillonite for packaging. J Appl Polym Sci 136:47512

    Article  CAS  Google Scholar 

  25. Lv S, Zhang Y, Gu J, Tan H (2017) Biodegradation behavior and modelling of soil burial effect on degradation rate of PLA blended with starch and wood flour. Colloid Surf B 159:800–808

    Article  CAS  Google Scholar 

  26. Gray N, Hamzeh Y, Kaboorani A, Abdulkhani A (2018) Influence of cellulose nanocrystal on strength and properties of low density polyethylene and thermoplastic starch composites. Ind Crop Prod 115:298–305

    Article  CAS  Google Scholar 

  27. Tang H, Chen J-B, Wang Y, Xu J-Z, Hsiao BS, Zhong G-J, Li Z-M (2012) Shear flow and carbon nanotubes synergistically induced nonisothermal crystallization of poly(lactic acid) and its application in injection molding. Biomacromol 13:3858–3867

    Article  CAS  Google Scholar 

  28. Wu S (2003) Surface and interfacial tensions of polymers, oligomers, plasticizers, and organic pigments. In: The wiley database of polymer properties. Wiley. https://doi.org/10.1002/0471532053.bra044

  29. Wang H, Qiu Z (2011) Crystallization behaviors of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526:229–236

    Article  CAS  Google Scholar 

  30. Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078–11081

    Article  CAS  PubMed  Google Scholar 

  31. Zhao X, Zhao J, Cao J-P, Wang D, Hu G-H, Chen F, Dang Z-M (2014) Effect of the selective localization of carbon nanotubes in polystyrene/poly(vinylidene fluoride) blends on their dielectric, thermal, and mechanical properties. Mater Des 56:807–815

    Article  CAS  Google Scholar 

  32. Uyama Y, Inoue H, Ito K, Kishida A, Ikada Y (1991) Comparison of different methods for contact angle measurement. J Colloid Interf Sci 141:275–279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardeshir Saeidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solati, M., Saeidi, A. & Ghasemi, I. The effect of graphene nanoplatelets on dynamic properties, crystallization, and morphology of a biodegradable blend of poly(lactic acid)/thermoplastic starch. Iran Polym J 28, 649–658 (2019). https://doi.org/10.1007/s13726-019-00731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00731-5

Keywords

Navigation