Skip to main content
Log in

Adsorption and release of caffeine from smart PVDF polyampholyte membrane

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

pH sensitivity, load, and release of caffeine from polyampholyte, acrylic acid (AAc), and 2-N,N-dimethylamino ethyl methacrylate (DMAEMA) grafted onto DURAPORE® PVDF membrane were studied. Polyampholyte was previously “grafted-from” on membranes by gamma irradiation technique in two steps: (1) PVDF-g-DMAEMA using direct method and (2) grafted AAc by pre-irradiation method, to obtain (PVDF-g-DMAEMA)-g-AAc. The results showed that binary copolymer grafted onto PVDF membrane PVDF-g-DMAEMA-g-AAc acts as responsive porous polymer membrane to control drug delivery. For this project, caffeine was used as a model drug. Drug adsorption was enhanced by the dissociation of grafting chains (PAAc and PDMAEMA) and by drug charge. The adsorption results showed that caffeine was loaded and released by the modified membrane and due to the nature of binary copolymer and the drug adsorption. Additional analysis as mechanical testing, scanning electron microscopy, and contact angle measurements was done to characterize the polyampholyte. This work designates the role of pH-sensitive acid, alkaline, and polyampholyte monomers in the improvement of no functionalized fluoropolymer membranes imparting its pH sensitivity and specific interaction with charged molecules as some drugs, proteins, or metals among others. The present results show that the load and release of caffeine adsorbed onto the pH-sensitive membrane and its strong dependence on pH and grafting degree. The membrane may be suitable for separating drugs from protein aqueous substances for subsequent monitoring and evaluation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tufani A, Ince GO (2017) Smart membranes with pH-responsive control of macromolecule permeability. J MembrSci 537:255–262

    CAS  Google Scholar 

  2. Tang Y, Xue Z, Zhou X, Xie X, Tang C (2014) Novel sulfonatedpolysulfone ion exchange membranes for ionic polymer-metal composite actuators. Sens Actuator B Chem 202:1164–1174

    Article  CAS  Google Scholar 

  3. Yang J, Kopeček J (2016) Design of smart HPMA copolymer-based nanomedicines. J Control Release 240:9–23

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Yan X, Zhao J, Feng H, Li P, Tong Z, Yang Z, Li S, Yang J, Jin S (2018) Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohyd Polym 191:8–16

    Article  CAS  Google Scholar 

  5. Fan XX, Xie R, Zhao Q, Li XY, Ju XJ, Wang W, Liu Z, Chu LY (2018) Dual pH-responsive smart gating membranes. J Membr Sci 555:20–29

    Article  CAS  Google Scholar 

  6. Wang L, Liu M, Gao C, Ma L, Cui D (2010) A pH-, thermo-, and glucose-, triple-responsive hydrogels: synthesis and controlled drug delivery. React Funct Polym 70:159–167

    Article  CAS  Google Scholar 

  7. Bottino A, Capannelli G, Comite A (2005) Novel porous poly(vinylidene fluoride) membranes for membrane distillation. Desalination 183:375–382

    Article  CAS  Google Scholar 

  8. Chae SR, Yamamura H, Ikeda K, Watanabe Y (2008) Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination. Water Res 42:2029–2042

    Article  CAS  PubMed  Google Scholar 

  9. Wu B, Li K, Teo WK (2007) Preparation and characterization of poly(vinylidene fluoride) hollow fiber membranes for vacuum membrane distillation. J Appl Polym Sci 106:1482–1495

    Article  CAS  Google Scholar 

  10. Salehi SM, Profio GD, Fontananova E, Nicoletta FP, Curcio E, Filpo GD (2016) Membrane distillation by novel hydrogel composite membranes. J Membr Sci 504:220–229

    Article  CAS  Google Scholar 

  11. Wang X, Chen C, Liu H, Ma J (2008) Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Res 42:4656–4664

    Article  CAS  PubMed  Google Scholar 

  12. Park HH, Deshwal BR, Jo HD, Choi WK, Kim IW, Lee HK (2009) Absorption of nitrogen dioxide by PVDF hollow fiber membranes in a G-L contactor. Desalination 243:52–64

    Article  CAS  Google Scholar 

  13. Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martin P, Gonçalves R, Cardoso VF, Lanceros-Méndez S (2018) Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Am Inc Part Springer Nat 13:681–704

    CAS  Google Scholar 

  14. Momtaz M, Dewez JL, Marchand-Brynaert J (2005) Chemical reactivity assay and surface characterization of a poly(vinylidene fluoride) microfiltration membrane (“Durapore DVPP”). J Membr Sci 205:29–37

    Article  CAS  Google Scholar 

  15. Ji J, Liu F, Hashim NA, Abed MRM, Li K (2015) Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. React FunctPolym 86:134–153

    Article  CAS  Google Scholar 

  16. Chen G, Lin Q, Chen S, Chen X (2016) In-plane biaxial ratcheting behavior of PVDF UF membrane. Polym Test 50:41–48

    Article  CAS  Google Scholar 

  17. Faisal A, AlMarzooqi FA, Bilad MR, Arafat HA (2016) Development of PVDF membranes for membrane distillation via vapour induced crystallisation. Eur Polym J 77:164–173

    Article  CAS  Google Scholar 

  18. Wang J, Zheng L, Wu Z, Zhang Y, Zhang X (2016) Fabrication of hydrophobic flat sheet and hollow fiber membranes from PVDF and PVDF-CTFE for membrane distillation. J Membr Sci 497:183–193

    Article  CAS  Google Scholar 

  19. Si T, Wang Y, Wei W, Lv P, Ma G, Su Z (2011) Effect of acrylic acid weight percentage on the pore size in poly(N-isopropyl acrylamide-co-acrylic acid) microspheres. React Funct Polym 71:728–735

    Article  CAS  Google Scholar 

  20. Ribeiro Clarisse, Sencadas Vítor, Correia Daniela M, Lanceros-Méndez Senentxu (2015) Piezoelectricpolymers as biomaterials for tissue engineering applications. Colloids Surf B 136:46–55

    Article  CAS  Google Scholar 

  21. Lasheras A, Gutiérrez J, Reis S, Sousa D, Silva M, Martins P, Lanceros-Mendez S, DA BarandiaránJM Shishkin, Potapov AP (2015) Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite. Smart Mater Struct 24:65024–65030

    Article  CAS  Google Scholar 

  22. Cuscito O, Clochard MC, Esnouf S, Betz N, Lairez D (2007) Nanoporous betaPVDF membranes with selectively functionalized pores. Nucl Instrum Methods Phys Res, Sect B 265:309–313

    Article  CAS  Google Scholar 

  23. Mohan YM, Geckeler KE (2007) Polyampholitichydrogels: poly(N-isopropylacrylamide)-based stimuli-responsive networks with poly (ethylene imine). React Funct Polym 67:144–155

    Article  CAS  Google Scholar 

  24. Wandera D, Wickramasinghe SR, Husson SM (2010) Stimuli-responsive membranes. J Membr Sci 357:6–35

    Article  CAS  Google Scholar 

  25. Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, Yang J, Zheng J (2018) Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng 19:86–93

    Article  Google Scholar 

  26. Hansen NML, Jankova K, Hvilsted S (2007) Fluoropolymer materials and architectures prepared by controlled radical polymerizations. Eur Polym J 43:255–293

    Article  CAS  Google Scholar 

  27. Liu Q, Zhu Z, Yang X, Chen X, Song Y (2007) Temperature-sensitive porous membrane production through radiation co-grafting of NIPAAm on/in PVDF porous membrane. Radiat Phys Chem 76:707–713

    Article  CAS  Google Scholar 

  28. Tabary N, Lepretre S, Boschin F, Blanchemain N, Neut C, Delcourt-Debruyne E, Martel B, Morcellet M, Hildebrand HF (2007) Functionalization of PVDF membranes with carbohydrate derivates for the controlled delivery of chlorhexidin. Biomol Eng 24:472–476

    Article  CAS  PubMed  Google Scholar 

  29. Clochard MC, Bègue J, Lafon A, Caldemaison D, Bittencourt C, Pireaux JJ, Betz N (2007) Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF. Polymer 45:8683–8694

    Article  CAS  Google Scholar 

  30. Karppi J, Åkerman S, Åkerman K, Sundell A, Nyyssönen K, Penttilä I (2007) Adsorption of drugs onto a pH responsive poly(N, N-dimethyl aminoethyl methacrylate) grafted anion-exchange membrane in vitro. Int J Pharm 338:7–14

    Article  CAS  PubMed  Google Scholar 

  31. Karppi J, Åkerman S, Åkerman K, Sundell A, Nyyssönen K, Penttilä I (2007) Isolation of drugs from biological fluids by using pH sensitive poly(acrylic acid) grafted poly(vinylidene fluoride) polymer membrane in vitro. Eur J Pharm Biopharm 67:562–568

    Article  CAS  PubMed  Google Scholar 

  32. Estrada-Villegas GM, Bucio E (2013) Comparative study of grafting a polyampholyte in a fluoropolymer membrane by gamma radiation in one or two-steps. Radiat Phys Chem 92:61–65

    Article  CAS  Google Scholar 

  33. Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clinical Biochem Rev 29:49–52

    Google Scholar 

  34. Ortega A, Alarcón D, Muñoz-Muñoz F, Garzón-Fontech A, Burillo G (2015) Radiation grafting of pH-sensitive acrylic acid and 4-vinyl pyridine onto nylon-6 using one- and two-step methods. Radiat Phys Chem 109:6–12

    Article  CAS  Google Scholar 

  35. Hu Y, Wang J, Zhang H, Jiang G, Kan C (2014) Synthesis and characterization of monodispersed P(St-co-DMAEMA) nanoparticles as pH-sensitive drug delivery system. Mater Sci Eng, C 45:1–7

    Article  CAS  Google Scholar 

  36. Dean JA (1985) Lange’s handbook of chemistry, 13th edn. McGraw-Hill Book Co, New York

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to B. Leal and F. García from ICN-UNAM for their technical assistance. This work was supported by DGAPA-UNAM under Grant IN201617 and partially financed by CONACyT-296395 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Estrada-Villegas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada-Villegas, G.M., González-Pérez, G. & Bucio, E. Adsorption and release of caffeine from smart PVDF polyampholyte membrane. Iran Polym J 28, 639–647 (2019). https://doi.org/10.1007/s13726-019-00730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00730-6

Keywords

Navigation