Skip to main content
Log in

Nitrate removal from drinking water by PAN ultrafiltration assisted with cationic surfactants: evaluation of effective factors using response surface methodology

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polyacrylonitrile ultrafiltration membrane was used to remove nitrate from aqueous solution, assisted by variations in cationic surfactant type and structure [cetylpyridinium chloride (CPC) and hexadecyl trimethylammonium bromide (HTAB)]. This paper also studied the effects of membrane thickness (150, 200, 250 µm), nitrate concentration (40, 120, 200 ppm), and surfactant concentration (0.4, 5.2, 10 mM) on removal efficiency. To this end, the required experiments were designed through response surface methodology using design-expert 7.0.0 software. The results showed that CPC was generally more efficient than HTAB due to its hydrophilic head structure. Rejection was improved significantly by increasing surfactant concentration over critical micelle concentration (CMC), but a slight fall was observed for CPC at about 10 mM concentration of surfactant in all nitrate concentrations. The optimal condition was obtained at 8.18 mM CPC, 196.2 ppm nitrate and thickness of 160 µm, which resulted in rejection of 80.29% at 30th min of filtration with an average flux of 19.25 L/m2 h. Increasing pressure showed a positive effect on rejection. Also, modified PVP-optimal membranes (160 µm) associated with different polyvinyl pyrrolidone (PVP) percentages by weight showed higher flux compared to an unmodified optimal membrane. Porosity and water content of optimal membrane were 49.9% and 82.56%, respectively, and surfactants rejection was always close to 100% over CMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mukherjee R, De S (2014) Adsorptive removal of nitrate from aqueous solution by polyacrylonitrile–alumina nanoparticle mixed matrix hollow-fiber membrane. J Membr Sci 466:281–292

    Article  CAS  Google Scholar 

  2. Bensaadi S, Amara M, Arous O, Kerdjoudj H (2016) Transfer of nitrate ions using a polymeric-surfactant membrane. Desalin Water Treat 57:5981–5987

    Article  CAS  Google Scholar 

  3. Bryan N, Grinsven H (2013) The role of nitrate in human health. Adv Agron 19:153–182

    Article  CAS  Google Scholar 

  4. Pennington JA (1998) Dietary exposure models for nitrates and nitrites. Food Control 9:385–395

    Article  Google Scholar 

  5. Fewtrell L (2004) Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ Health Perspect 112:1371

    Article  PubMed  PubMed Central  Google Scholar 

  6. McAdam E, Judd S (2006) A review of membrane bioreactor potential for nitrate removal from drinking water. Desalination 196:135–148

    Article  CAS  Google Scholar 

  7. Hekmatzadeh AA, Karimi-Jashni A, Talebbeydokhti N, Kløve B (2013) Adsorption kinetics of nitrate ions on ion exchange resin. Desalination 326:125–134

    Article  CAS  Google Scholar 

  8. Nabid MR, Sedghi R, Sharifi R, Oskooie HA, Heravi MM (2013) Removal of toxic nitrate ions from drinking water using conducting polymer/MWCNTs nanocomposites. Iran Polym J 22:85–92

    Article  CAS  Google Scholar 

  9. Holloway RW, Wait AS, da Silva AF, Herron J, Schutter MD, Lampi K, Cath TY (2015) Long-term pilot scale investigation of novel hybrid ultrafiltration-osmotic membrane bioreactors. Desalination 363:64–74

    Article  CAS  Google Scholar 

  10. Khamforoush M, Pirouzram O, Hatami T (2015) The evaluation of thin film composite membrane composed of an electrospun polyacrylonitrile nanofibrous mid-layer for separating oil–water mixture. Desalination 359:14–21

    Article  CAS  Google Scholar 

  11. Etemadi H, Yegani R, Seyfollahi M, Rabiee M (2018) Synthesis, characterization, and anti-fouling properties of cellulose acetate/polyethylene glycol-grafted nanodiamond nanocomposite membranes for humic acid removal from contaminated water. Iran Polym J 27:1–13

    Article  CAS  Google Scholar 

  12. Chang H, Liang H, Qu F, Liu B, Yu H, Du X, Li G, Snyder SA (2017) Hydraulic backwashing for low-pressure membranes in drinking water treatment: a review. J Membr Sci 540:362–380

    Article  CAS  Google Scholar 

  13. Scharnagl N, Buschatz H (2001) Polyacrylonitrile (PAN) membranes for ultra-and microfiltration. Desalination 139:191–198

    Article  CAS  Google Scholar 

  14. Ngang H, Ahmad A, Low S, Ooi B (2012) Preparation of mixed-matrix membranes for micellar enhanced ultrafiltration based on response surface methodology. Desalination 293:7–20

    Article  CAS  Google Scholar 

  15. Vinder A, Simonič M (2012) Removal of AOX from waste water with mixed surfactants by MEUF. Desalination 289:51–57

    Article  CAS  Google Scholar 

  16. Daniş Ü, Keskinler B (2009) Chromate removal from wastewater using micellar enhanced crossflow filtration: effect of transmembrane pressure and crossflow velocity. Desalination 249:1356–1364

    Article  CAS  Google Scholar 

  17. Aktaş N, Boyacı İH, Mutlu M, Tanyolaç A (2006) Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM). Bioresour Technol 97:2252–2259

    Article  CAS  PubMed  Google Scholar 

  18. Bashir MJK, Aziz HA, Yusoff MS, Adlan MN (2010) Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254:154–161

    Article  CAS  Google Scholar 

  19. Pakbaz M, Maghsoud Z (2017) Performance evaluation of polyvinylchloride/polyacrylonitrile ultrafiltration blend membrane. Iran Polym J 26:833–849

    Article  CAS  Google Scholar 

  20. Fan G, Su Z, Lin R, Lin X, Xu R, Wei Chen (2016) Influence of membrane materials and operational modes on the performance of ultrafiltration modules for drinking water treatment. Polym Sci 2016:1–8

    CAS  Google Scholar 

  21. Nabid M, Sedghi R, Sharifi R, Abdi Oskooie H, Heravi M (2012) Removal of toxic nitrate ions from drinking water using conducting polymer/MWCNTs nanocomposites. Iran Polym J 22:85–92

    Article  CAS  Google Scholar 

  22. Warsinger DM, Chakraborty S, Tow EW, Plumlee MH, Bellona C, Loutatidou S, Karimi L, Mikelonis AM, Achilli A, Ghassemi A, Padhye LP, Snyder SA, Curcio S, Vecitis C, Arafat HA, Lienhard JH (2016) A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci 10:209–237

    Google Scholar 

  23. Kim BK, Baek K, Yang JW (2004) Simultaneous removal of nitrate and phosphate using cross-flow micellar-enhanced ultrafiltration (MEUF). Water Sci Technol 50:227–234

    Article  CAS  PubMed  Google Scholar 

  24. Morel G, Ouazzani N, Graciaa A, Lachaise J (1997) Surfactant modified ultrafiltration for nitrate ion removal. J Membr Sci 134:47–57

    Article  CAS  Google Scholar 

  25. Baek K, Yang JW (2004) Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: competitive binding. J Hazard Mater 108:119–123

    Article  CAS  PubMed  Google Scholar 

  26. Rahmanian B, Pakizeh M, Esfandyari M, Heshmatnezhad F, Maskooki A (2011) Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF). J Hazard Mater 192:585–592

    Article  CAS  PubMed  Google Scholar 

  27. Schwarze M, Groß M, Moritz M, Buchner G, Kapitzki L, Chiappisi L, Gradzielski M (2015) Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate. J Membr Sci 478:140–147

    Article  CAS  Google Scholar 

  28. Verma SP, Sarkar B (2017) Rhamnolipid based micellar-enhanced ultrafiltration for simultaneous removal of Cd (II) and phenolic compound from wastewater. Chem Eng J 319:131–142

    Article  CAS  Google Scholar 

  29. Armstrong FAJ (1963) Determination of nitrate in water byultraviolet spectrophotometry. Anal Chem 35:1292–1294

    Article  CAS  Google Scholar 

  30. Baek K, Yang JW (2004) Micellar-enhanced ultrafiltration of chromate and nitrate: binding competition between chromate and nitrate. Desalination 167:111–118

    Article  CAS  Google Scholar 

  31. Chen Y, Zhang Y, Liu J, Zhang H, Wang K (2012) Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chem Eng J 210:298–308

    Article  CAS  Google Scholar 

  32. Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA (2012) Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J Membr Sci 401:132–143

    Article  CAS  Google Scholar 

  33. Baek K, Yang JW (2004) Simultaneous removal of chlorinated aromatic hydrocarbons, nitrate, and chromate using micellar-enhanced ultrafiltration. Chemosphere 57:1091–1097

    Article  CAS  PubMed  Google Scholar 

  34. Fillipi BR, Brant LW, Scamehorn JF, Christian SD (1999) Use of micellar-enhanced ultrafiltration at low surfactant concentrations and with anionic–nonionic surfactant mixtures. J Colloid Interface Sci 213:68–80

    Article  CAS  PubMed  Google Scholar 

  35. El-Maksoud SA (2004) The effect of hexadecyl pyridinium bromide and hexadecyl trimethyl ammonium bromide on the behaviour of iron and copper in acidic solutions. J Electroanal Chem 565:321–328

    Article  CAS  Google Scholar 

  36. McCloskey BD, Park HB, Ju H, Rowe BW, Miller DJ, Chun BJ, Kin K, Freeman BD (2010) Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 51:3472–3485

    Article  CAS  Google Scholar 

  37. Jung B (2004) Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration. J Membr Sci 229:129–136

    Article  CAS  Google Scholar 

  38. Jung B, Yoon JK, Kim B, Rhee HW (2004) Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J Membr Sci 243:45–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Khamforoush.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami Nekoo, A., Khamforoush, M. Nitrate removal from drinking water by PAN ultrafiltration assisted with cationic surfactants: evaluation of effective factors using response surface methodology. Iran Polym J 28, 391–401 (2019). https://doi.org/10.1007/s13726-019-00708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00708-4

Keywords

Navigation