Advertisement

Antifouling behaviour of PVDF/TiO2 composite membrane: a quantitative and qualitative assessment

  • Zeenat ArifEmail author
  • Naresh Kumar Sethy
  • Lata Kumari
  • Pradeep Kumar Mishra
  • Bhawna Verma
Original Research
  • 1 Downloads

Abstract

The composite membranes of PVDF/TiO2 were prepared by a phase-inversion technique. Different amounts of TiO2 with respect to the weight of the polymer were incorporated in the casting solution to study qualitatively and quantitatively the antifouling property of the membrane. The membrane morphology was studied using a high-resolution scanning electron microscopy and atomic force microscopy, whereas the crystalline nature was studied using X-ray diffraction method. The interfacial interactions between foulants and TiO2 immobilized membranes were also evaluated using the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) approach. The XDLVO theory revealed an increase in repulsive interactive energy barrier with an increase in TiO2 loading, thus causing to improve the antifouling property of the membrane. Intercalation of TiO2 nanoparticles efficiently improved the porosity and wettability of the polymeric membranes, which could be confirmed by the contact angle analyzer analysis. The modified PVDF membranes exhibited excellent antimicrobial properties against Gram-negative Escherichia coli as confirmed from the halo zone and activity test. The permeation experimental results also showed high protein rejection of bovine serum albumin and humic acid (foulant) for membranes with optimum TiO2 loading of 0.01 g/g of PVDF polymer. However, at a concentration of 0.02 g TiO2/g of PVDF a negative effect on the membrane property was observed due to the former non-uniform distribution.

Keywords

Hydrophilicity Fouling Permeability Membrane Antibacterial 

Notes

Acknowledgements

The authors acknowledge Central Instrument Facility, IIT (BHU) for characterization facility.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Elimelech M, Phillip AW(2011)The future of seawater desalination: energy, technology, and the environment. Science 333:712–717Google Scholar
  2. 2.
    Salimi A, Yousefi AA (2013) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22:699–704CrossRefGoogle Scholar
  3. 3.
    Wang Q, Wang Z, Zhang J, Wang J, Wu Z (2014) Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalance monitoring. RSC Adv 4:43590–43598CrossRefGoogle Scholar
  4. 4.
    Lin T, Lu Z, Chen W (2015) Interaction mechanisms of humic acid combined with calcium ions on membrane fouling at different conditions in an ultrafiltration system. Desalination 357:26–35CrossRefGoogle Scholar
  5. 5.
    Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284:17–53CrossRefGoogle Scholar
  6. 6.
    Hong H, Peng W, Zhang M, Chen J, He Y, Wang F, Weng X, Yu H, Lin H (2013) Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications. Bioresour Technol 146:7–14CrossRefGoogle Scholar
  7. 7.
    Buonomenna MG, Macchi P, Davoli M, Drioli E (2007) Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polym J 43:1557–1572CrossRefGoogle Scholar
  8. 8.
    Chang H, Qu F, Liu B, Yu H, Li K, Shao S, Li G, Liang H (2015) Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: effects of membrane properties and backwash water composition. J Membr Sci 493:723–733CrossRefGoogle Scholar
  9. 9.
    Weis A, Bird MR, Nyström M, Wright C (2005) The influence of morphology, hydrophobicity and charge upon the long-term performance of ultrafiltration membranes fouled with spent sulphite liquor. Desalination 175:73–85CrossRefGoogle Scholar
  10. 10.
    Kim DS, Kangand JS, Lee YM (2004) The influence of membrane surface properties on fouling in a membrane bioreactor for wastewater treatment. Sep Sci Technol 39:833–854CrossRefGoogle Scholar
  11. 11.
    Mo J, Son SH, Jegal J, Kim J, Lee YH (2007) Preparation and characterization of polyamide nanofiltration composite membranes with TiO2 layers chemically connected to the membrane surface. J Appl Polym Sci 105:1267–1274CrossRefGoogle Scholar
  12. 12.
    Li JF, Xu ZL, Yang H, Yu LY, Liu M (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. App Surf Sci 255:4725–4732CrossRefGoogle Scholar
  13. 13.
    Li WY, Sun XL, Wen C, Lu H, Wang ZW (2013) Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes. Front Env Sci Eng 7:492–502CrossRefGoogle Scholar
  14. 14.
    Yang YN, Wang P (2006) Preparation and characterizations of new PS/TiO2 hybrid membranes by sol–gel process. Polymer 47:2683–2688CrossRefGoogle Scholar
  15. 15.
    Yan L, Hong S, Li ML, Li YS (2009) Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep Purif Technol 66:347–352CrossRefGoogle Scholar
  16. 16.
    Wang ZH, Yu HR, Xia JF, Zhang FF, Li F, Xia YZ, Li YH (2012) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54CrossRefGoogle Scholar
  17. 17.
    Brunet P, Lyon DY, Zodrow K, Rouch JC, Caussat B, Serp P, Remigy JC, Wiesner MR, Alvarez PJJ (2008) Properties of membranes containing semi-dispersed carbon nanotubes. Environ Eng Sci 25:565–575CrossRefGoogle Scholar
  18. 18.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  19. 19.
    Zhang X, Wang Z, Chen M, Liu M, Wu Z (2016) Polyvinylidene fluoride membrane blended with quaternary ammonium compound for enhancing anti-biofouling properties: effects of dosage. J Membr Sci 520:66–75CrossRefGoogle Scholar
  20. 20.
    Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028CrossRefGoogle Scholar
  21. 21.
    Subramaniam MN, Goh PS, Lau WJ, Tan YH, Ng BC, Ismail AF (2017) Hydrophilic hollow fiber PVDF ultrafiltration membrane incorporated with titanate nanotubes for decolourization of aerobically-treated palm oil mill effluent. Chem Eng J 316:101–110CrossRefGoogle Scholar
  22. 22.
    Liu X, Chen Q, Lv L, Feng X, Meng X (2015) Preparation of transparent PVA/TiO2 nanocomposite films with enhanced visible-light photocatalytic activity. Catal Commun 58:30–33CrossRefGoogle Scholar
  23. 23.
    Almeida NA, Martins PM, Teixeira S, da Silva JAL, Sencadas V, Kühn K, Cuniberti G, Mendez SL, Marques PAAP (2016) TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospun membranes with enhanced visible-light induced photocatalytic performance. J Mater Sci 51:6974–6986CrossRefGoogle Scholar
  24. 24.
    Zhang M, Liao B, Zhou X, He Y, Hong H, Lin H, Chen J (2015) Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresour Technol 175:59–67CrossRefGoogle Scholar
  25. 25.
    Derjaguin B (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14:633–662Google Scholar
  26. 26.
    Verwey EJ (1947) Theory of the stability of lyophobic colloids. J Phys Chem 51:631–636CrossRefGoogle Scholar
  27. 27.
    Lin T, Lu ZJ, Chen W (2014) Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach. J Membr Sci 461:49–58CrossRefGoogle Scholar
  28. 28.
    Wang X, Zhou M, Meng X, Wang L, Huang D (2016) Effect of protein on PVDF ultrafiltration membrane fouling behavior under different pH conditions, interface adhesion force and XDLVO theory analysis. Front Env Sci Eng 10:12CrossRefGoogle Scholar
  29. 29.
    Van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf B 5:91–110CrossRefGoogle Scholar
  30. 30.
    Safarpour M, Khataee A, Vatanpour V (2014) Preparation of a novel polyvinylidenefluoride (PVDF) ultrafiltration membrane modified with reduced grapheme oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties. Ind Eng Chem Res 53:13370–13382CrossRefGoogle Scholar
  31. 31.
    Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eurp Polym J 42:2081–2087CrossRefGoogle Scholar
  32. 32.
    Du JR, Peldszus S, Huck PM, Feng X (2015) Modification of membrane surfaces via microswelling for fouling control in drinking water treatment. J Membr Sci 475:488–495CrossRefGoogle Scholar
  33. 33.
    Kim BS, Lee J (2016) Macroporous PVDF/TiO2 membranes with three-dimensionally interconnected pore structures produced by directional melt crystallization. Chem Eng J 301:158–165CrossRefGoogle Scholar
  34. 34.
    Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement. J Membr Sci 345:13–20CrossRefGoogle Scholar
  35. 35.
    Meng N, Priestley RCE, Zhang Y, Wang H, Zhang X (2016) The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J Membr Sci 501:169–178CrossRefGoogle Scholar
  36. 36.
    Zhao C, Xu X, Chen J, Yang F (2013) Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J Environ Chem Eng 1:349–354CrossRefGoogle Scholar
  37. 37.
    Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301CrossRefGoogle Scholar
  38. 38.
    Bae TH, Tak TM (2005) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249:1–8CrossRefGoogle Scholar
  39. 39.
    Martins PM, Miranda R, Marques J, Tavares CJ, Botelho G, Lanceros-Mendez S (2016) Comparative efficiency of TiO2 nanoparticles in suspension vs. immobilization into P(VDF–TrFE) porous membranes. RSC Adv 6:12708–12716CrossRefGoogle Scholar
  40. 40.
    Damodar RA, Youa S, Chou H (2009) Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazard Mater 172:1321–1328CrossRefGoogle Scholar
  41. 41.
    Shen F, Lu XF, Bian XK, Shi LQ (2005) Preparation and hydrophilicity study of poly (vinyl butyral)-based ultrafiltration membranes. J Membr Sci 265:74–84CrossRefGoogle Scholar
  42. 42.
    He Y, Chen X, Dai F, Xu R, Yang N, Feng X, Zhao Y, Chen L (2018) Immobilization of poly(N-acryloylmorpholine) via hydrogen-bonded interactions for improved separation and antifouling properties of poly (vinylidene fluoride) membranes. React Funct Polym 123:80–90CrossRefGoogle Scholar
  43. 43.
    Rincon AG, Pulgarin C (2003) Photocatalytical inactivation of E. coli, effect of (continuous intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl Catal B 44:263–284CrossRefGoogle Scholar
  44. 44.
    Caballero L, Whitehead KA, Allen NS, Verran J (2009) Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A 202:92–98CrossRefGoogle Scholar
  45. 45.
    Rahimpour A, Jahanshahi M, Rajaeian B, Rahimnejad M (2011) TiO2 entrapped nano-composite PVDF/SPES membranes: preparation, characterization, antifouling and antibacterial properties. Desalination 278:343–353CrossRefGoogle Scholar
  46. 46.
    Dutta AK, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H, Ifuku S (2015) Facile preparation of surface N-halamine chitin nanofiber to endow antibacterial and antifungal activities. Carbohydr Polym 115:342–347CrossRefGoogle Scholar
  47. 47.
    Liu J, Shen X, Zhao Y, Chen L (2013) Acryloylmorpholine-grafted PVDF membrane with improve protein fouling resistance. Ind Eng Chem Res 52:18392–18400CrossRefGoogle Scholar
  48. 48.
    Li X, Fang X, Pang R, Li J, Sun X, Shen J, Han W, Wang L (2014) Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. J Membr Sci 467:226–235CrossRefGoogle Scholar
  49. 49.
    Arsuaga JM, Lopez-Munoz MJ, Sotto A (2010) Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes. Desalination 250:829–832CrossRefGoogle Scholar
  50. 50.
    Orooji Y, Liang F, Razmjou A, Li S, Mofid R, Liu Q, Guan K, Liu Z, Jin W (2017) Excellent biofouling alleviation of thermoexfoliated vermiculite blended poly(ether sulfone) ultrafiltration membrane. ACS Appl Mater Interfaces 9:30024–30034CrossRefGoogle Scholar
  51. 51.
    Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wanga Z, Qiana X (2013) Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low dimensional carbon nanomaterials. J Mater Chem A 1:3101CrossRefGoogle Scholar
  52. 52.
    Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, Zhou B, Qian X (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 458:1–13CrossRefGoogle Scholar
  53. 53.
    Wu T, Zhou B, Zhu T, Shi J, Xu Z, Hua C, Wang J (2015) Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv 5:7880–7889CrossRefGoogle Scholar
  54. 54.
    Li X, Li J, Fang X, Bakzhan K, Wang L, Bruggen BV (2016) A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles. J Colloid Interface Sci 469:164–176CrossRefGoogle Scholar
  55. 55.
    Peng Y, Yu Z, Pan Y, Zeng G (2017) Antibacterial photocatalytic self-cleaning poly(vinylidene fluoride) membrane for dye wastewater treatment. Polym Adv Technol 29:254–262CrossRefGoogle Scholar
  56. 56.
    Cao X, Ma J, Shi X, Ren Z (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and TechnologyIndian Institute of Technology (BHU)VaranasiIndia
  2. 2.Department of ChemistryIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations