Skip to main content

Advertisement

Log in

Preparation and characterization of Calendula officinalis-loaded PCL/gum arabic nanocomposite scaffolds for wound healing applications

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Medicinal plants such as Calendula officinalis (C. officinalis) are commonly used for skin wounds’ treatment. On the other hand, gum arabic (GA) has a lot of potential for use in wound healing because of its unique physio-chemical properties. Wound healing activity of gum arabic (GA) and Calendula officinalis (C. officinalis) along with good mechanical properties of poly (ε-caprolactone) (PCL) can produce a suitable nanofibrous scaffold for skin tissue engineering as well as wound dressing application. In this study, PCL/C. officinalis/GA nanofibrous scaffolds with diameter distribution in the range of 85–290 nm were prepared via electrospinning. Characteristics of the nanofibrous scaffolds, i.e., morphology, scaffold compounds, porosity, mechanical and antibacterial properties, hydrophilicity and degradability in phosphate buffer saline (PBS) were investigated. Cell viability and proliferation of scaffolds were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. Results indicated that hydrophilicity of the PCL/C. officinalis/GA scaffolds was higher than the PCL scaffold. The tensile strength and elongation of the PCL/C. officinalis/GA scaffolds were in the range of 2.13–4.41 MPa and 26.37–74.37%, respectively, which are very suitable for skin tissue engineering. The porosity of the scaffolds was higher than 60% and was appropriate for the proliferation of fibroblast cells. The nanocomposite scaffold also showed suitable degradability and antimicrobial activity. Moreover, cell culture indicated that GA and C. officinalis promoted cell attachment and proliferation. It can be concluded that the nanofibrous calendula-loaded PCL/GA scaffolds are well suited for regenerating skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhong S, Zhang Y, Lim C (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:510–525

    Article  CAS  PubMed  Google Scholar 

  2. Ranjbar-Mohammadi M, Bahrami SH (2015) Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Mater Sci Eng C Mater Biol Appl 48:71–79

    Article  CAS  PubMed  Google Scholar 

  3. Pereira RF, Bartolo PJ (2016) Traditional therapies for skin wound healing. Adv Wound Care (New Rochelle) 5:208–229

    Article  Google Scholar 

  4. Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M (2015) Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater 4:1114–1133

    Article  CAS  PubMed  Google Scholar 

  5. Bhardwaj N, Chouhan D, Mandal BB (2018) In: Deng Y, Kuiper J (eds) Functional 3D tissue engineering scaffolds,materials, technologies and applications, 1st edn. Elsevier, Cambridge

    Google Scholar 

  6. Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Alizadeh-Ghodsi M, Davaran S, Montaseri A (2018) Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol 46:691–705

    Article  CAS  Google Scholar 

  7. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1:15–30

    Article  CAS  Google Scholar 

  8. Zarekhalili Z, Bahrami SH, Ranjbar-Mohammadi M, Milan PB (2017) Fabrication and characterization of PVA/gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes. Int J Biol Macromol 94:679–690

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater. https://doi.org/10.1155/2013/495708

    Article  Google Scholar 

  10. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413–1433

    Article  CAS  PubMed  Google Scholar 

  11. Sundaramurthi D, Krishnan UM, Sethuraman S (2014) Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev 54:348–376

    Article  CAS  Google Scholar 

  12. Hadavi M, Hasannia S, Faghihi S, Mashayekhi F, Zadeh H, Mostofi S (2017) Novel calcified gum arabic porous nano-composite scaffold for bone tissue regeneration. BiochemBiophys Res Commun 488:671–678

    Article  CAS  Google Scholar 

  13. Tewari A (2010) An over view on chemistry and applications of acacia gums. Der Pharma Chemica 2:327–331

    CAS  Google Scholar 

  14. Silva RA, Mehl P, Wilson OC (2010) Gum arabic-chitosan composite biopolymer scaffolds for bone tissue engineering. In: 26th South Biomed Eng ConfSBEC, April 30–May 2, College Park, Maryland, USA

  15. Bhatnagar M, Parwani L, Sharma V, Ganguli J, Bhatnagar A (2013) Hemostatic, antibacterial biopolymers from Acacia arabica (Lam.) Willd. and Moringa oleifera (Lam.) as potential wound dressing materials. Indian J Exp Biol 51:804–810

    PubMed  Google Scholar 

  16. Ali BH, Ziada A, Blunden G (2009) Biological effects of gum arabic: a review of some recent research. Food Chem Toxicol 47:1–8

    Article  CAS  PubMed  Google Scholar 

  17. Sarika PR, James NR, Kumar PA, Raj DK, Kumary TV (2015) Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydr Polym 134:167–174

    Article  CAS  PubMed  Google Scholar 

  18. Fathollahiopur S, Maziarfar S, Tavakoli J (2013) Characterization and evaluation of acacia gum loaded PVA hybrid wound dressing. In: Biomedical engineering (ICBME), 2013 20th Iranian Conference on IEEE, pp 149–154

  19. Samy WM, Ghoneim AI, Elgindy NA (2014) Novel microstructured sildenafil dosage forms as wound healing promoters. Expert Opin Drug Deliv 11:1525–1536

    Article  CAS  PubMed  Google Scholar 

  20. Jin G, Prabhakaran MP, Kai D, Annamalai SK, Arunachalam KD, Ramakrishna S (2013) Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials 34:724–734

    Article  CAS  PubMed  Google Scholar 

  21. Marume A, Matope G, Katsande S, Khoza S, Mutingwende I, Mduluza T, Munodawafa-Taderera T, Ndhlala AR (2017) Wound healing properties of selected plants used in ethnoveterinary medicine. Front Pharmacol 8:544. https://doi.org/10.3389/fphar.2017.00544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown DJ, Dattner AM (1998) Phytotherapeutic approaches to common dermatologic conditions. Arch Dermatol 134:1401–1404

    Article  CAS  PubMed  Google Scholar 

  23. Un RN, Barlas FB, Yavuz M, Ag Seleci D, Seleci M, Gumus ZP, Guler E, Demir B, Can M, Coskunol H, Timur S (2015) Phyto-niosomes: in vitro assessment of the novel nanovesicles containing marigold extract. Int J Polym Mater 64:927–937

    Article  CAS  Google Scholar 

  24. Ćetković GS, Djilas SM, Čanadanović-Brunet JM, Tumbas VT (2004) Antioxidant properties of marigold extracts. Food Res Int 37:643–650

    Article  Google Scholar 

  25. Ukiya M, Akihisa T, Yasukawa K, Tokuda H, Suzuki T, Kimura Y (2006) Anti-inflammatory, anti-tumor-promoting, and cytotoxic activities of constituents of marigold (Calendula officinalis) flowers. J Nat Prod 69:1692–1696

    Article  CAS  PubMed  Google Scholar 

  26. Dasgupta N, Ranjan S, Mohammed SMA, Jadon PS, Melvin SS, Harris AD, Chakraborty AR, Ramalingama C (2014) Extraction-based blood coagulation activity of marigold leaf: a comparative study. Comp Clin Path 23:1715–1718

    Article  Google Scholar 

  27. Goyal M, Mathur R (2011) Antimicrobial effects of Calendula officinalis against human pathogenic microorganisms. J Herbal Med Tox 5:97–101

    CAS  Google Scholar 

  28. Dinda M, Dasgupta U, Singh N, Bhattacharyya D, Karmakar P (2015) PI3K-mediated proliferation of fibroblasts by calendula officinalis tincture: implication in wound healing. Phytother Res 29:607–616

    Article  CAS  PubMed  Google Scholar 

  29. Vargas EA, do Vale Baracho NC, De Brito J, De Queiroz AA (2010) Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater 6:1069–1078

    Article  CAS  PubMed  Google Scholar 

  30. Hosseinkazemi H, Biazar E, Bonakdar S, Ebadi M-T, Shokrgozar M-A, Rabiee M (2015) Modification of PCL electrospun nanofibrous mat with Calendula officinalis extract for improved interaction with cells. Int J Polym Mater 64:459–464

    Article  CAS  Google Scholar 

  31. Jiménez RA, Millán D, Suesca E, Sosnik A, Fontanilla MR (2015) Controlled release of an extract of Calendula officinalis flowers from a system based on the incorporation of gelatin-collagen microparticles into collagen I scaffolds: design and in vitro performance. Drug Deliv Transl Res 5:209–218

    Article  CAS  PubMed  Google Scholar 

  32. Menda JP, Reddy T, Deepika R, Pandima Devi M, Sastry TP (2014) Preparation and characterization of wound healing composites of chitosan, aloe vera and calendula officinalis—a comparative study. AJPCT 2:61–76

    Google Scholar 

  33. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 29:863–893

    Article  CAS  PubMed  Google Scholar 

  34. Baghersad S, Bahrami SH, Mohammadi MR, Mojtahedi MRM, Milan PB (2018) Development of biodegradable electrospun gelatin/aloe-vera/poly(ε-caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. Mater Sci Eng C 93:367–379

    Article  CAS  Google Scholar 

  35. Fadaie M, Mirzaei E, Geramizadeh B, Asvar Z (2018) Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr Polym 199:628–640

    Article  CAS  PubMed  Google Scholar 

  36. Chanda A, Adhikari J, Ghosh A, Chowdhury SR, Thomas S, Datta P, Saha P (2018) Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 116:774–785

    Article  CAS  PubMed  Google Scholar 

  37. Kim MS, Kim HJ, Jang JY, Shin HS (2018) Development of coaxial alginate-PCL nanofibrous dressing for controlled release of spirulina extract. J Biomater Sci Polym Ed 29:1389–1400

    Article  CAS  PubMed  Google Scholar 

  38. PedramRad Z, Mokhtari J, Abbasi M (2018) Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Mater Sci Eng C 93:356–366

    Article  CAS  Google Scholar 

  39. Amiraliyan N, Nouri M, Haghighat Kish M (2010) Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polym Sci Ser A 52:407–412

    Article  Google Scholar 

  40. Feiz S, Navarchian AH, Jazani OM (2018) Poly(vinyl alcohol) membranes in wound-dressing application: microstructure, physical properties, and drug release behavior. Iran Polym J 27:193–205

    Article  CAS  Google Scholar 

  41. Tsai R-Y, Chen P-W, Kuo T-Y, Lin C-M, Wang D-M, Hsien T-Y, Hsieh H-J (2014) Chitosan/pectin/gum arabic polyelectrolyte complex: process-dependent appearance, microstructure analysis and its application. Carbohydr Polym 101:752–759

    Article  CAS  PubMed  Google Scholar 

  42. Wu F, Wei J, Liu C, O’Neill B, Ngothai Y (2012) Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering. Compos B Eng 43:2192–2197

    Article  CAS  Google Scholar 

  43. Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022

    Article  CAS  Google Scholar 

  44. Sultana N, Hassan MI, Lim MM (2015) Composite synthetic scaffolds for tissue engineering and regenerative medicine. Springer, New York

    Book  Google Scholar 

  45. Fierascu I, Bunghez I-R, Fierascu RC, Ion R-M, Dinu Pîrvu CE, Nuţă D (2014) Characterization and antioxidant activity of phytosynthesised silver nanoparticles using Calendula officinalis extract. Farmacia 62:129–136

    CAS  Google Scholar 

  46. Bunghez I-R, Ion R-M (2011) Complex spectral characterization of active principles from marigold (Calendula officinalis). J Sci Arts 11:59–64

    Google Scholar 

  47. Gils PS, Ray D, Sahoo PK (2010) Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel. Int J Biol Macromol 46:237–244

    Article  CAS  PubMed  Google Scholar 

  48. Ololade O (2018) In: Mariod AA (ed) Gum arabic structuer, properties, application and economics. Elsevier, Akoka

    Google Scholar 

  49. Wu D, Xu J, Chen Y, Yi M, Wang Q (2018) Gum arabic: a promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances. Carbohydr Polym 181:167–174

    Article  CAS  PubMed  Google Scholar 

  50. Yang Y, Zhu X, Cui W, Li X, Jin Y (2009) Electrospun composite mats of poly [(d,l-lactide)-co-glycolide] and collagen with high porosity as potential scaffolds for skin tissue engineering. Macromol Mater Eng 294:611–619

    Article  CAS  Google Scholar 

  51. Cui W, Zhu X, Yang Y, Li X, Jin Y (2009) Evaluation of electrospun fibrous scaffolds of poly(d,l-lactide) and poly(ethylene glycol) for skin tissue engineering. Mater Sci Eng C 29:1869–1876

    Article  CAS  Google Scholar 

  52. Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A (2011) Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J Biomed Mater Res A 96:566–574

    Article  CAS  PubMed  Google Scholar 

  53. Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457:82–91

    Article  CAS  PubMed  Google Scholar 

  54. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2015) Electrospun poly (ε-caprolactone)-based skin substitutes: in vivo evaluation of wound healing and the mechanism of cell proliferation. J Biomed Mater Res B 103:1445–1454

    Article  CAS  Google Scholar 

  55. Parente LML, Júnior L, de Souza R, Tresvenzol LMF, Vinaud MC, de Paula JR, Paulo NM (2012) Wound healing and anti-inflammatory effect in animal models of Calendula officinalis L. growing in Brazil. Evid Based Complement Alternat Med. https://doi.org/10.1155/2012/375671

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by University of Guilan, Rasht, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedram Rad, Z., Mokhtari, J. & Abbasi, M. Preparation and characterization of Calendula officinalis-loaded PCL/gum arabic nanocomposite scaffolds for wound healing applications. Iran Polym J 28, 51–63 (2019). https://doi.org/10.1007/s13726-018-0674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0674-x

Keywords

Navigation