Iranian Polymer Journal

, Volume 27, Issue 12, pp 927–937 | Cite as

Growth inhibition in calcium sulfate crystal using a copolymer in oil fields: theoretical study and experimental evaluations

  • Marissa Pérez-AlvarezEmail author
  • Raúl Oviedo-Roa
  • Enrique Soto-Castruita
  • Eduardo Buenrostro-González
  • Rodolfo Cisneros-Dévora
  • David Nieto-Álvarez
  • Mirna Pons-Jiménez
  • Luis S. Zamudio-RiveraEmail author
Original Research


A poly(itaconic acid-co-sodium vinylsulphonate) (PIASVS) was theoretically studied and experimentally evaluated as an inhibitory agent against the growth of calcium sulfate (CaSO4) crystals, in both non-saline and saline solutions. Density functional theory revealed that the CaSO4 crystal precipitation could be precluded through the effective pairing of Ca2+ and SO42− ions by carboxylic group polymer heads and that, moreover, the Na+ cations of the sulphonate polymer heads could be easily replaced by Ca2+. With PIASVS concentration of 50 ppm, lower than what is required in oil recovery processes, the polymer inhibited 33% in CaSO4 crystals growth in non-saline solution, but the salt increased the inhibitory performance of PIASVS up to 54%. Thermogravimetric analysis, scanning electron microscopy and X-ray diffractometry techniques showed that PIASVS changed the CaSO4 crystal morphology from a bassanite phase in non-saline solution to a bassanite/gypsum mix. The crystal morphology observations along with the conductivity measurements confirmed the pairing of ions from dissolved CaSO4 by NaCl and PIASVS. Dynamic light scattering revealed that, the PIASVS cluster size increased in non-saline solution but decreased in saline solutions, suggesting that NaCl increases the PIASVS solubility in aqueous solution. The performance of PIASVS as anti-scaling agent was found to be suitable for the conditions found in the Mexican oil reservoirs.


Poly (itaconic acid) Antiscale, calcium sulfate Crystal morphology Poly (alkyl vinyl sulfate) Molecular modelling 



The authors express gratitude to the Instituto Mexicano del Petróleo (IMP) for both providing facilities and granting permission to publish results. This work was supported by the IMP (Project H.61001) and CONACYT-SENER-HIDROCARBUROS Fund [Project 146735 (Y.00123 in the IMP)]. M. Pérez-Alvarez, E. Soto-Castruita and R. Cisneros-Dévora thank to Dirección de CátedrasCONACyT for the financial support granted during the research reported at this manuscript.

Supplementary material

13726_2018_663_MOESM1_ESM.pdf (326 kb)
Supplementary material 1 (PDF 326 KB)


  1. 1.
    Kelland MA (2011) Effect of various cations on the formation of calcium carbonate and barium sulfate scale with and without scale inhibitors. Ind Eng Chem Res 50:5852–5861CrossRefGoogle Scholar
  2. 2.
    Crabtree M, Eslinger D, Fletcher P, Miller M, Johnson A, King G (1999) Fighting scale-removal and prevention. Oilfield Rev 11:30–45Google Scholar
  3. 3.
    Ricaurte M, Perozo H (2007) Filtration effect on water in oil emulsions stabilization in slope crude treatment. SPE. CrossRefGoogle Scholar
  4. 4.
    Schramm L (1992) Emulsions fundamentals and applications in the petroleum industry. American Chemical Society, WashingtonCrossRefGoogle Scholar
  5. 5.
    Mullins OC, Sheu EY, Hammami A, Marshall AG (2007) Asphaltenes, heavy oils and petroleomics. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Khatami HR, Ranjbar M, Schaffie M, Emady MA (2010) Development of a fuzzy saturation index for sulfate scale prediction. J Petrol Sci Eng 71:13–18CrossRefGoogle Scholar
  7. 7.
    Liu SY, Qu CT, Wang JD (2014) The progress of scale problems and compatibility experiment study in oilfield water treatment. Adv Mater Res 1004–1005:653–656Google Scholar
  8. 8.
    Underdown DR (1988) Method for scale inhibition in a wall penetrating a subterranean formation. US Patent 4,741,400Google Scholar
  9. 9.
    Jones F, Oliveira A, Rohl AL, Parkinson GM, Ogden MI, Reyhani MM (2002) Investigation into the effect of phosphonate inhibitors on barium sulfate precipitation. J Cryst Growth 237–239:424–429CrossRefGoogle Scholar
  10. 10.
    Liua Z, Fua H, Zhanga L, Lia H, Liua X (2016) Synthesis of itaconic acid—sodium allylsulfonate—sodium hypophosphite copolymer and evaluation of its scale and corrosion inhibition performance. Desalin Water Treat 57:5740–5752CrossRefGoogle Scholar
  11. 11.
    Hamdona SK, Hamza SM (2009) Influence of some phosphates and polyphosphate on the precipitation of calcium sulfate dihydrate in sodium chloride solutions. J Taibah Univ Sci 2:44–51CrossRefGoogle Scholar
  12. 12.
    Halverson AM, Halverson DS (2002) Use of dodecylbenzene sulfonic acid or salt as a scale inhibitor. US Patent 6,436,154B1Google Scholar
  13. 13.
    Gu X, Qiu F, Zhou X, Qi J, Zhou Y, Guo X, Yang D (2012) Preparation, characterization, and inhibition efficiency of quadripolymer for use as scale inhibitor. Int J Polym Anal Chem 17:321–332CrossRefGoogle Scholar
  14. 14.
    Al-Hamzah AA, Fellows CM (2015) A comparative study of novel scale inhibitors with commercial scale inhibitors used in seawater desalination. Desalination 359:22–25CrossRefGoogle Scholar
  15. 15.
    Gu T, Liu X, Chai W, Li B, Sun H (2014) A preliminary research on polyvinylalcohol hydrogel: a slowly-released anti-corrosion and scale inhibitor. J Petrol Sci Eng 122:453–457CrossRefGoogle Scholar
  16. 16.
    Yang DD, Chen ZX (2001) Preparation and evaluation of modified tannin. J E China Univ Sci Technol 27:388–391Google Scholar
  17. 17.
    Xie Y, Zeng XQ (2003) Research on property and mechanism of scale inhibition and dispersion of modified lignosulfonate LSA. J Gui Zhou Univ Technol 32:1Google Scholar
  18. 18.
    Belzile N, Maki S, Chen YW, Goldsack D (1997) Inhibition of pyrite oxidation by surface treatment. Sci Total Environ 196:177–186CrossRefGoogle Scholar
  19. 19.
    Hernández-Altamirano R, Mena-Cervantes VY, Zamudio-Rivera LS, Luna-Rojero EE, Martínez-Magadan JM, Nieto-Álvarez DA, Pons-Jiménez M, Ramírez-Estrada A, Arzola-Garcia MP (2014) Process to obtain random copolymers derived from itaconic acid and/or its isomers and sodium alkenyl sulfonates and use of the product thereof. US Patent Application 14/260,746Google Scholar
  20. 20.
    Mena-Cervantes VY, Hernández-Altamirano R, Zamudio-Rivera LS, Luna-Rojero EE, Martínez-Magadan JM, Nieto-Álvarez DA, Pons-Jiménez M, Ramírez- Estrada A, Arzola-Garcia MP (2016) Proceso de obtención de copolímeros aleateorios derivados del ácido itacónico y/o sus isómeros y alquenilsulfonatos de sodio y uso del producto obtenido. México, MX 342993BGoogle Scholar
  21. 21.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  22. 22.
    Klepetsanis PG, Dalas E, Koutsoukos PG (1999) Role of temperature in the spontaneous precipitation of calcium sulfate dihydrate. Langmuir 15:1534–1540CrossRefGoogle Scholar
  23. 23.
    Pons-Jiménez M, Hernández-Altamirano R, Cisneros-Dévora R, Buenrostro-González E, Oviedo-Roa R, Martínez-Magadan JM, Zamudio-Rivera LS (2015) Theoretical and experimental insights into the control of calcium sulfate scales by using random copolymers based on itaconic acid. Fuel 149:66–77CrossRefGoogle Scholar
  24. 24.
    Wang C, Li SP, Li TD (2009) Calcium carbonate inhibition by a phosphonate terminated poly(maleic-co-sulfonate) polymeric inhibitor. Desalination 249:1–4CrossRefGoogle Scholar
  25. 25.
    Kırboga S, Öner M (2012) The inhibitory effects of carboxymethyl inulin on the seeded growth of calcium carbonate. Colloids Surf B Biointerfaces 91:18–25CrossRefGoogle Scholar
  26. 26.
    Singh N, Middendorf B (2007) Calcium sulfate hemihydrate hydration leading to gypsum crystallization. Prog Cryst Growth Charact Mater 53:57–77CrossRefGoogle Scholar
  27. 27.
    Van-Driessche A, Benning L, Ossorio M, Rodríguez-Blanco JD, Bots P, García-Ruiz JM (2012) Bassanite, a stable crystalline precursor phase during gypsum precipitation at room temperature. Rev Soc Española Mineral 16:172–173Google Scholar
  28. 28.
    Bishop J, Lane M, Dyar D, King S, Brown A, Swayze G (2014) Spectral properties of Ca-sulfates: gypsum, bassanite and anhydrite. Am Mineral 99:2105–2115CrossRefGoogle Scholar
  29. 29.
    Ramsdell LS, Partridge P (1929) The crystal forms of calcium sulfate. J Mineral Soc Am 1:59–74Google Scholar
  30. 30.
    Van Driessche AES, Benning LG, Rodriguez-Blanco JD, Ossorio M, Bots P, García-Ruiz JM (2012) The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336:69–72CrossRefGoogle Scholar
  31. 31.
    Ruiz-de-Cauka A (1973) La determinación del contenido en yeso hemihidrato y dihidrato en los cementos por análisis térmico. Mater Constr 23:152Google Scholar
  32. 32.
    Diaz-Uribe CE, Vallejo WA, Miranda J (2013) Distribución del tamaño de partícula de la tetracarboxifenilporfirina de hierro (III) adsorbida sobre dióxido de silicio por dispersión dinámica de luz. Rev Elem. CrossRefGoogle Scholar
  33. 33.
    Cuadros-Moreno A, Casañas Pimentel R, San-Martín-Martínez E, Yañes-Fernandez J (2014) Dispersión de luz dinámica en la determinación de tamaño de nanopartículas poliméricas. Lat Am J Phys Educ 8:4314-1–4314-5Google Scholar
  34. 34.
    Fernández IJ (2008) Polímeros en solución y aplicación de los polímeros en la industria petrolera. Rev Iberoam Polím 2003:1–4Google Scholar
  35. 35.
    Förster S, Schmidt M, Antonietti M (1990) Static and dynamic light scattering by aqueous polyelectrolyte solutions: effect of molecular weight, charge density and added salt. Polymer 31:781–792CrossRefGoogle Scholar
  36. 36.
    Rane SS, Choi P (2005) Polydispersity index: how accurately does it measure the breadth of the molecular weight distribution? Chem Matter 17:926–926CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2018

Authors and Affiliations

  1. 1.Conacyt - Instituto Mexicano del PetróleoMexico CityMexico
  2. 2.Instituto Mexicano del PetróleoMexico CityMexico

Personalised recommendations