Skip to main content
Log in

Sepiolite hybridized commercial fillers, and their effects on curing process, mechanical properties, thermal stability, and flammability of ethylene propylene diene monomer rubber composites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Ethylene propylene diene monomer rubber (EPDM)-based composites containing sepiolite (sep) hybridized with calcium carbonate (CaCO3), silica (Sil) or carbon black (CB) were prepared on a two-roll mill. The influence of fillers’ contents on the curing, mechanical, thermal and flammability of the composites was investigated. In comparison with EPDM/sep at 30 parts per hundred rubbers (phr) as a control composite, EPDM/sep/CB composites exhibited an outstanding improvement in tensile strength followed by EPDM/sep/Sil and EPDM/sep/CaCO3 composites. EPDM/sep/CB displayed the highest thermal stability and also improved flammability resistance. In addition, a higher amount of carbon black gave higher tensile strength. The results were influenced by the ability of CB to disperse well and form protective layers acting as mass transport barriers in the matrix. The field emission scanning electron microscopy analyses proved better dispersion of CB in the matrix. The presence of protective layers on the surface of samples consequently improved the thermal properties of the EPDM composites. The mechanism of formation of char protective layer in hybrid EPDM composites was also investigated based on morphological observations of char residues. According to this work, Sil and CB were able to hybrid with sep, while sep could be a potential substitution of CaCO3 in the EPDM composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Galimberti M, Cipolletti V, Cioppa S, Lostritto A, Conzatti L (2017) Reduction of filler networking in silica based elastomeric nanocomposites with exfoliated organo-montmorillonite. Appl Clay Sci 135:168–175

    Article  CAS  Google Scholar 

  2. Sadeghi Ghari H, Jalali-Arani A (2016) Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: study on the structure, cure behavior, static and dynamic-mechanical properties. Appl Clay Sci 119:348–357

    Article  CAS  Google Scholar 

  3. Zhao G, Shi L, Zhang D, Feng X, Yuan S, Zhuo J (2012) Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Mater Des 35:847–853

    Article  CAS  Google Scholar 

  4. Tang Q, Wang F, Liu X, Tang M, Zeng Z, Liang J, Guan X, Wang J, Mu X (2016) Surface modified palygorskite nano fibers and their applications as reinforcement phase in cis-polybutadiene rubber nanocomposites. Appl Clay Sci 133:175–181

    Article  CAS  Google Scholar 

  5. Poikelispää M, Das A, Dierkes W, Vuorinen J (2013) The effect of partial replacement of carbon black by carbon nanotubes on the properties of natural rubber/butadiene rubber compound. J Appl Polym Sci 130:3153–3160

    Article  CAS  Google Scholar 

  6. Qiao H, Chao M, Hui D, Liu J, Zheng J, Lei W, Zhou X, Wang R (2017) Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent. Compos Part B Eng 114:356–364

    Article  CAS  Google Scholar 

  7. Sobhy MS, El-Nashar DE, Maziad NA (2003) Cure characteristics and physicomechanical properties of calcium carbonate reinforcement rubber composites. Egypt J Sol 26:241–257

    Google Scholar 

  8. Gul S, Kausar A, Muhammad B, Jabeen S (2015) Research progress on properties and applications of polymer/clay nanocomposite. Polym Plast Technol Eng 55:684–703

    Article  CAS  Google Scholar 

  9. Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Handb. Clay Sci., First edit. Elsevier Ltd, Amsterdam

    Google Scholar 

  10. Lu P, Xu J, Liu K (2011) Preparation and properties of unsaturated polyester nanocomposites based on silylated sepiolite nanofibers. J Appl Polym Sci 119:3043–3050

    Article  CAS  Google Scholar 

  11. Zotti A, Borriello A, Ricciardi M, Antonucci V, Giordano M, Zarrelli M (2015) Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy. Compos Part B Eng 73:139–148

    Article  CAS  Google Scholar 

  12. Choudhury A, Bhowmick AK, Ong C (2009) Novel role of polymer-solvent and clay-solvent interaction parameters on the thermal, mechanical and optical properties of polymer nanocomposites. Polymer 50:201–210

    Article  CAS  Google Scholar 

  13. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187

    Article  CAS  Google Scholar 

  14. Nohales A, Muñoz-Espí R, Félix P, Gómez CM (2011) Sepiolite-reinforced epoxy nanocomposites: thermal, mechanical, and morphological behavior. J Appl Polym Sci 119:539–547

    Article  CAS  Google Scholar 

  15. Alkan ÜB, Kızılcan N (2015) In situ preparation of resol/sepiolite nanocomposites. Procedia Soc Behav Sci 195:2067–2075

    Article  Google Scholar 

  16. Olivato JBB, Marini J, Yamashita F, Pollet E, Grossman MVE, Averous L (2017) Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester. Mater Sci Eng C 70:296–302

    Article  CAS  Google Scholar 

  17. Zaini NAM, Ismail H, Rusli A (2017) A short review on sepiolite filled polymer nanocomposites. Polym Plast Technol Eng 56:1665–1679

    Article  CAS  Google Scholar 

  18. Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Charaborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos Part A Appl Sci Manuf 40:309–316

    Article  CAS  Google Scholar 

  19. Szeluga U, Kumanek B, Trzebicka B (2015) Synergy in hybrid polymer/nanocarbon composites. A review. Compos Part A Appl Sci Manuf 73:204–231

    Article  CAS  Google Scholar 

  20. Liu YB, Li L, Wang Q (2010) Reinforcement of natural rubber with carbon black/nanoclay hybrid filler. Plast Rubber Compos 39:370–376

    Article  CAS  Google Scholar 

  21. Malas A, Das CK (2012) Carbon black-clay hybrid nanocomposites based upon EPDM elastomer. J Mater Sci 47:2016–2024

    Article  CAS  Google Scholar 

  22. Nik Ismail NI, Ansarifar A, Song M (2014) Effect of hybrid reinforcement based on precipitated silica and montmorillonite nanofillers on the mechanical properties of a silicone rubber. Polym Eng Sci 54:1909–1921

    Article  CAS  Google Scholar 

  23. Esmizadeh E, Naderi G, Paran SMR (2008) Preparation and characterization of hybrid nanocomposites based on NBR/nanoclay/carbon black. Polym Compos 16:101–113

    Article  Google Scholar 

  24. Ismail H, Mathialagan M (2012) Comparative study on the effect of partial replacement of silica or calcium carbonate by bentonite on the properties of EPDM composites. Polym Test 31:199–208

    Article  CAS  Google Scholar 

  25. Sankaran K, Manoharan P, Chattopadhyay S, Nair S, Govindan U, Arayambath S, Nando GB (2016) Effect of hybridization of organoclay with carbon black on the transport, mechanical, and adhesion properties of nanocomposites based on bromobutyl/epoxidized natural rubber blends. RSC Adv 6:33723–33732

    Article  CAS  Google Scholar 

  26. Pasbakhsh P, Ismail H, Mohd Noor Ahmad F, Abu Bakar A (2009) The Partial replacement of silica or calcium carbonate by halloysite nanotubes as fillers in ethylene propylene diene monomer composites. J Appl Polym Sci 113:3910–3919

    Article  CAS  Google Scholar 

  27. Senthivel K, Manikandan K, Prabu B (2015) Studies on the mechanical properties of carbon black/halloysite nanotube hybrid fillers in nitrile rubber nanocomposites. Mater Today Proc 2:3627–3637

    Article  Google Scholar 

  28. Bokobza L, Leroy E, Lalanne V (2009) Effect of filling mixtures of sepiolite and a surface modified fumed silica on the mechanical and swelling behavior of a styrene-butadiene rubber. Eur Polym J 45:996–1001

    Article  CAS  Google Scholar 

  29. Khimi SR, Pickering KL (2014) A new method to predict optimum cure time of rubber compound using dynamic mechanical analysis. J Appl Polym Sci 131:1–6

    Article  CAS  Google Scholar 

  30. Hair ML, Hertl W (1970) Acidity of surface hydroxyl groups. J Phys Chem 74:91–94

    Article  CAS  Google Scholar 

  31. Bilotti E, Zhang R, Deng H, Quero F, Fischer HR, Peijs T (2009) Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Compos Sci Technol 69:2587–2595

    Article  CAS  Google Scholar 

  32. Yu T, Lin J, Xu J, Chen T, Lin S, Tian X (2007) Novel polyacrylonitrile/Na-MMT/silica nanocomposite: co-incorporation of two different form nano materials into polymer matrix. Compos Sci Technol 67:3219–3225

    Article  CAS  Google Scholar 

  33. Malas A, Hatui G, Pal P, Das CK (2014) Synergistic effect of expanded graphite/carbon black on the physical and thermo-mechanical properties of ethylene propylene diene terpolymer. Polym Plast Technol Eng 53:716–724

    Article  CAS  Google Scholar 

  34. Liu J, Zhang Y, Guo Y, Lu C, Pan B, Peng S, Ma J, Niu Q (2016) Effect of carbon black on the thermal degradation and flammability properties of flame retarded high impact polystyrene magnesium hydroxide microencapsulated red phosphorous composite. Polym Compos 16:1–13

    Google Scholar 

  35. Liu M, Pu M, Ma H (2012) Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Compos Sci Technol 72:1508–1514

    Article  CAS  Google Scholar 

  36. Kashiwagi T, Mu M, Winey K, Cipriano B, Raghavan SR, Pack S, Rafailovich M, Yang Y, Grulke E, Shileds J, Harris R, Douglas J (2008) Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 49:4358–4368

    Article  CAS  Google Scholar 

  37. Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495–1505

    Article  CAS  Google Scholar 

  38. Wen X, Wang Y, Gong J, Lin J, Tian N, Wang Y, Jiang Z, Qiu J, Tang T (2012) Thermal and flammability properties of polypropylene/carbon black nanocomposites. Polym Degrad Stab 97:793–801

    Article  CAS  Google Scholar 

  39. Yang H, Gong J, Wen X, Xue J, Chen Q, Jiang Z, Tian T, Tang T (2015) Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos Sci Technol 113:31–37

    Article  CAS  Google Scholar 

  40. Rybinski P, Anyszka R, Imiela M, Siciński M, Gozdek T (2017) Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials. J Therm Anal Calorim 127:2383–2396

    Article  CAS  Google Scholar 

  41. Gong J, Tian N, Wen X, Cheng X, Liu J, Jiang Z, Mijowska E, Tang T (2014) Synergistic effect of fumed silica with Ni2O3 on improving flame retardancy of poly(lactic acid). Polym Degrad Stab 104:18–27

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all levels of staffs in the Department of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM). They provided a wide variety of facilities unconditionally, to make this research a success. One of the authors is also deeply indebted to the Ministry of Higher Education of Malaysia (KPT(BS)821115065540) and Universiti Teknologi Mara (UiTM) (600-BPD(PKH.1/2/9946) for providing funding to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanafi Ismail.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1443 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Zaini, N.A., Ismail, H. & Rusli, A. Sepiolite hybridized commercial fillers, and their effects on curing process, mechanical properties, thermal stability, and flammability of ethylene propylene diene monomer rubber composites. Iran Polym J 27, 663–675 (2018). https://doi.org/10.1007/s13726-018-0643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0643-4

Keywords

Navigation