Skip to main content

Advertisement

Log in

Perforative silica microsphere-modified phenolphthalein-based poly(arylene ether sulfone) composites: tensile and thermal properties

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Perforative silica microspheres (PSMs) were prepared by an emulsion method coupled with sol–gel technology and phase separation. Next, phenolphthalein-based poly(arylene ether sulfone)/PSM composites (PES-C/PSM) were fabricated. PSM was characterized by scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller (BET) method. The as-synthesized PSM exhibited a spherical shape with an external diameter of 2–10 µm, surface area of 166.5 m2/g and pore volume of 1.35 cm3/g. SEM and energy-dispersive spectroscopy (energy-dispersive spectroscopy) were used to characterize the morphology and the composition of the composite, respectively. Both SEM and energy-dispersive spectroscopy results revealed that the PES-C polymer chains penetrated into the PSM pores. In addition, the effect of PSM weight content on the mechanical properties and thermal stability of the composites was characterized by tensile tests and thermal analysis, respectively. A 19% increase in tensile strength and a 29% increase in breaking elongation of PES-C were achieved by the addition of 0.50 wt% PSM. Moreover, the thermal oxidative stability of PES-C was remarkably improved with the incorporation of PSM. Compared with pristine PES-C, the final degradation temperature was enhanced by 42 °C at 1.0 wt% PSM loading. Our studies have indicated that PSM is a kind of promising reinforcement for improvement of tensile and thermal properties of engineering plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zheng S, Guo Q, Mi Y (2003) Miscibility and phase behavior in blends of phenolphthalein poly(ether sulfone) and poly(hydroxyether of bisphenol-A). Polymer 44:867–876

    Article  CAS  Google Scholar 

  2. Wang Z, Chen T, Xu J (2000) Gas transport properties of novel cardo poly(aryl ether ketone)s with pendant alkyl groups. Macromolecules 33:5672–5679

    Article  CAS  Google Scholar 

  3. Chen G, Zhang X, Zhang S, Chen T, Wu Y (2007) Synthesis, properties, and gas permeation performance of cardo poly(arylene ether sulfone)s containing phthalimide side groups. J Appl Polym Sci 106:2808–2816

    Article  CAS  Google Scholar 

  4. Sugama T (1998) Polyphenylethersulfone adhesive for EPDM elastomer-to-stainless steel joints in a hydrothermal environment. J Mater Sci 33:5095–5102

    Article  CAS  Google Scholar 

  5. Wang G, Fu G, Gao T, Kuang H, Wang R, Yang F, Jiao W, Hao L, Liu W (2016) Preparation and characterization of novel film adhesives based on cyanate ester resin for bonding advanced radome. Int J Adhes Adhes 68:80–86

    Article  CAS  Google Scholar 

  6. Wang M, Wu LG, Mo HX, Gao CH (2006) The preparation and characterization of novel charged polyacrylonitrile/PES-C blend membranes used for ultrafiltration. JMembr Sci 274:200–208

    Article  CAS  Google Scholar 

  7. Blanco JF, Nguyen QT, Schaetzel P (2001) Novel hydrophilic membrane materials: sulfonated polyethersulfone cardo. J Membr Sci 186:267–279

    Article  CAS  Google Scholar 

  8. Bolong N, Ismail AF, Salim MR, Rana D, Matsuura T, Tabe-Mohammadi A (2010) Negatively charged polyethersulfone hollow fiber nanofiltration membrane for the removal of bisphenol-A from wastewater. Sep Purif Technol 73:92–99

    Article  CAS  Google Scholar 

  9. Lin CX, Zhuo YZ, Lai AN, Zhang QG, Zhu AM, Liu QL (2016) Comb-shaped phenolphthalein-based poly(ether sulfone)s as anion exchange membranes for alkaline fuel cells. RSC Adv 6:17269–17279

    Article  CAS  Google Scholar 

  10. Rao AHN, Kim HJ, Nam S, Kim TH (2013) Cardo poly(arylene ether sulfone) block copolymers with pendant imidazolium side chains as novel anion exchange membranes for direct methanol alkaline fuel cell. Polymer 54:6918–6928

    Article  CAS  Google Scholar 

  11. Lai AN, Zhuo YZ, Lin CX, Zhang QG, Zhu AM, Ye ML, Liu QL (2016) Side-chain-type phenolphthalein-based poly(arylene ether sulfone nitrile)s anion exchange membrane for fuel cells. J Membr Sci 502:94–105

    Article  CAS  Google Scholar 

  12. Dong X, Hou S, Mao H, Zheng J, Zhang S (2016) Novel hydrophilic-hydrophobic block copolymer based on cardo poly (arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes. J Membr Sci 518:31–39

    Article  CAS  Google Scholar 

  13. Kishi H, Shi YB, Huang J, Yee AF (1997) Shear ductility and toughenability study of highly cross-linked epoxy/polyethersulphone. J Mater Sci 32:761–771

    Article  CAS  Google Scholar 

  14. Yang Y, Li B, Zhang Y, Zhang Y, Zhuang G (1995) Thermal and mechanical properties of phenolphthalein polyethersulfone/poly (phenylene sulfide) blends. J Appl Polym Sci 55:633–639

    Article  CAS  Google Scholar 

  15. Mi Y, Feng J, Chan C-M, Guo Q (1997) Blends of phenolphthalein poly (ether ether sulfone) with a thermotropic liquid crystalline copolyester. J Macromol Sci Part B Phys 36:153–167

    Article  Google Scholar 

  16. Li G, Yin J, Li B, Zhuang G, Yang Y, Nicolais L (1995) In situ composite: phenolphthalein polyethersulfone—thermotropic liquid crystalline polymer blends. Polym Eng Sci 35:658–665

    Article  CAS  Google Scholar 

  17. Sharma M, Bijwe J, Singh K (2011) Studies for wear property correlation for carbon fabric-reinforced PES composites. Tribo Lett 43:267

    Article  CAS  Google Scholar 

  18. Zhang SL, Yin SB, Rong CR, Huo PF, Jiang ZH, Wang GB (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. Eur Polym J 49:3125–3134

    Article  CAS  Google Scholar 

  19. Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301

    Article  CAS  Google Scholar 

  20. Celik E, Park H, Choi H, Choi H (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45:274–282

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Wang YX (2006) Proton conducting composite membranes from sulfonated polyethersulfone cardo and phosphotungstic acid for fuel cell application. J Power Sources 162:541–546

    Article  CAS  Google Scholar 

  22. Yu J, Li L, Liu N, Lee R (2013) An approach to prepare defect-free PES/MFI-type zeolite mixed matrix membranes for CO2/N2separation. J Mater Sci 48:3782–3788

    Article  CAS  Google Scholar 

  23. Asadi V, Jafari SH, Khonakdar HA, Haeussler L, Wagenknecht U (2016) Poly(ethylene succinate) nanocomposites containing inorganic WS2 nanotubes with improved thermal properties: a kinetic study. Composites Part B98:496–507

    Article  CAS  Google Scholar 

  24. Shariatmadar F, Mohsen-Nia M (2012) PES/SiO2nanocomposite by in situ polymerization: synthesis, structure, properties, and new applications. Polym Compos 33:1188–1196

    Article  CAS  Google Scholar 

  25. Teng S, Qiu Z (2017) Enhanced crystallization and mechanical properties of biodegradable poly(ethylene succinate) by octaisobutyl-polyhedral oligomeric silsesquioxanes in their nanocomposites. Thermochim Acta 649:22–30

    Article  CAS  Google Scholar 

  26. Peydayesh M, Mohammadi T, Bakhtiari O (2018) Effective treatment of dye wastewater via positively charged TETA-MWCNT/PEShybrid nanofiltration membranes. Sep Purif Technol 194:488–502

    Article  CAS  Google Scholar 

  27. Shi ZG, Feng YQ (2008) Synthesis and characterization of hierarchically porous silica microspheres with penetrable macropores and tunable mesopores. Microporous Mesoporous Mater 116:701–704

    Article  CAS  Google Scholar 

  28. Wang L, Liu XH, Wang X, Yang XJ, Lu LD (2011) Gelatin-assisted porous expansion of mesoporous silica. J Mater Sci 46:634–640

    Article  CAS  Google Scholar 

  29. Sun ZQ, Fan JM, Hu P, Ding F, Yang J, Yuan FL (2017) A novel low-temperature strategy for synthesis of alumina ceramics with uniform and interconnected pores by silica coating. J Mater Sci 52:1603–1616

    Article  CAS  Google Scholar 

  30. Shi ZG, Guo QZ, Liu YT, Xiao YX, Xu L (2011) Drug delivery devices based on macroporous silica spheres. Mater Chem Phys 126:826–831

    Article  CAS  Google Scholar 

  31. Long T, Guo QZ, Xu LY (2011) Fast separation of sulfanilamides using macroporous silica spheres as the separation media. J Liq Chromatogr Related Technol 34:1391–1398

    Article  CAS  Google Scholar 

  32. Ma LY, Li J, Zhao J, Liao H, Xu L, Shi ZG (2016) Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography. Anal Bioanal Chem 408:805–814

    Article  CAS  PubMed  Google Scholar 

  33. Lu L, Teng F, Qi D, Wang L, Zhang J (2015) Synthesis of visible-light driven CrxOy TiO2 binary photocatalyst based on hierarchical macro-mesoporous silica. Appl Catal B 163:9–15

    Article  CAS  Google Scholar 

  34. Pan YT, Trempont C, Wang DY (2016) Hierarchical nanoporous silica doped with tin as novel multifunctional hybrid material to flexible poly(vinyl chloride) with greatly improved flame retardancy and mechanical properties. Chem Eng J 295:451–460

    Article  CAS  Google Scholar 

  35. Nhat Tri V, Patra AK, Kim D (2017) Pore size and concentration effect of mesoporous silica nanoparticles on the coefficient of thermal expansion and optical transparency of poly(ether sulfone) films. Phys Chem Chem Phys 19:1937–1944

    Article  CAS  Google Scholar 

  36. Tanimoto Y, Kitagawa T, Aida M, Nishiyama N (2006) Experimental and computational approach for evaluating the mechanical characteristics of dental composite resins with various filler sizes. Acta Biomater 2:633–639

    Article  PubMed  Google Scholar 

  37. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural National Science Foundation of China (51503165) and the Youth Science Foundation of Wuhan Institute of Technology, China (Q201701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Hu, L., Fan, C. et al. Perforative silica microsphere-modified phenolphthalein-based poly(arylene ether sulfone) composites: tensile and thermal properties. Iran Polym J 27, 611–619 (2018). https://doi.org/10.1007/s13726-018-0637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0637-2

Keywords

Navigation