Skip to main content
Log in

Cross-linked polyvinyl amidoxime fiber: a highly selective and recyclable adsorbent of gallium from Bayer liquor

Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Gallium, a scarce metal produced mainly from Bayer liquor, is widely used in semiconductors. Ion-exchange method is currently considered as the most effective method to recover gallium from Bayer liquor. In this article, fibrous amidoxime adsorbents are introduced to recover gallium from Bayer liquor. In addition, hydrazine cross-linked polyvinyl amidoxime (HPAO) fibers have been prepared. The structure of the as-prepared fibers was ascertained by FTIR, elemental analysis and weight gain rate. The adsorption kinetics, adsorption isotherm and recycling performance were investigated by batch method. Cross-linking duration was studied and it turned out to be an important factor to optimize the adsorption capacity and recycling performance. After 1.5 h cross-linking time, the fiber showed the highest gallium adsorption capacity of 14.83 mg/g in Bayer liquor. After 3 h cross-linking time, the fiber showed the best recycling performance, which retained 82.9% of the initial adsorption ability after four cycles. Adsorption capacity of vanadium was lower than 1 mg/g for all samples. HPAO displayed very fast adsorption kinetics with an equilibrium at 60 min. The EDS results confirmed the low extraction of aluminum and vanadium provided by HPAO fibers. The gallium-loaded fiber could be effectively eluted by acidified thiourea. With proper control of the cross-linking duration by hydrazine, HPAO fiber with high selectivity towards gallium, high adsorption capacity and good recycle performance could be obtained, which is promising for recovering gallium needed for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. United States Geological Survey (2016) Mineral commodity summaries. Miner Commod Summ. https://doi.org/10.3133/70140094

    Article  Google Scholar 

  2. Løvik AN, Restrepo E, Müller DB (2015) The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements. Environ Sci Technol 49:5704–5712

    Article  CAS  PubMed  Google Scholar 

  3. United States Geological Survey (2000) Mineral commodity summaries. United States Geological Survey, Reston, pp 1–196. https://doi.org/10.3133/70140094

    Book  Google Scholar 

  4. Lu F, Xiao T, Lin J, Ning Z, Long Q, Xiao L, Huang F, Wang W, Xiao Q, Lan X, Chen H (2017) Resources and extraction of gallium: a review. Hydrometallurgy 174:105–115

    Article  CAS  Google Scholar 

  5. Zhao Z, Yang Y, Xiao Y, Fan Y (2012) Recovery of gallium from Bayer liquor: a review. Hydrometallurgy 125–126:115–124

    Article  CAS  Google Scholar 

  6. Sipos P, Megyes T, Berkesi O (2008) The structure of gallium in strongly alkaline, highly concentrated Gallate solutions-a Raman and 71 Ga-NMR spectroscopic study. J Solut Chem 37:1411–1418

    Article  CAS  Google Scholar 

  7. Selvi P, Ramasami M, Samuel MHP, Adaikkalam P, Srinivasan GN (2004) Recovery of gallium from bayer liquor using chelating resins in fixed-bed columns. Ind Eng Chem Res 43:2216–2221

    Article  CAS  Google Scholar 

  8. Puvvada GVK, Chandrasekhar K, Ramachandrarao P (1996) Solvent extraction of gallium from an Indian Bayer process liquor using Kelex-100. Miner Eng 9:1049–1058

    Article  CAS  Google Scholar 

  9. Changjiang L (2013) Gallium production status and prospect in China. Light Met. https://doi.org/10.13662/j.cnki.qjs.2013.08.009

    Article  Google Scholar 

  10. Zhao Z, Li X, Chai Y, Hua Z, Xiao Y, Yang Y (2016) Adsorption performances and mechanisms of amidoxime resin toward gallium(III) and vanadium(V) from Bayer liquor. ACS Sustain Chem Eng 4:53–59

    Article  CAS  Google Scholar 

  11. Riveros PA (1990) Recovery of gallium from Bayer liquors with an amidoxime resin. Hydrometallurgy 25:1–18

    Article  CAS  Google Scholar 

  12. Long H, Zhao Z, Chai Y, Li X, Hua Z, Xiao Y, Yang Y (2015) Binding mechanism of the amidoxime functional group on chelating resins toward gallium(III) in bayer liquor. Ind Eng Chem Res 54:8025–8030

    Article  CAS  Google Scholar 

  13. Ling C, Liu X, Yang X, Hu J, Li R, Pang L, Ma H, Li J, Wu G, Lu S, Wang D (2017) Uranium adsorption tests of amidoxime-based ultrahigh molecular weight polyethylene fibers in simulated seawater and natural coastal marine seawater from different locations. Ind Eng Chem Res 56:1103–1111

    Article  CAS  Google Scholar 

  14. Dungan K, Butler G, Livens FR, Warren LM (2017) Uranium from seawater—infinite resource or improbable aspiration? Prog Nucl Energy 99:81–85

    Article  Google Scholar 

  15. Ren J, Yan C, Liu Q, Yang Q, Lu G, Son Y, Li Y (2018) Preparation of amidoxime-modified polyacrylonitrile nanofibrous adsorbents for the extraction of copper(II) and lead(II) ions and dye from aqueous media. J Appl Polym Sci 135:1–9

    Google Scholar 

  16. Ajmal M, Demirci S, Siddiq M, Aktas N, Sahiner N (2016) Amidoximated poly(acrylonitrile) particles for environmental applications: removal of heavy metal ions, dyes, and herbicides from water with different sources. J Appl Polym Sci 133:1–11

    Article  CAS  Google Scholar 

  17. Weiping L, Yun L, Hanmin Z (1992) Preparation of the amidoxime group containing chelating fiber and adsorption property of gold: I. preparation of chelating fiber by amidoximation of polyacrylonitrile fiber. React Polym 17:255–261

    Article  Google Scholar 

  18. Ozgen S, Sarioglu K (2013) Synthesis and characterization of acrylonitrile-co-divinylbenzene (AN/DVB) polymeric resins for the isolation of aroma compounds and anthocyanins from strawberry. Food Bioprocess Tech 6:2884–2894

    Article  CAS  Google Scholar 

  19. Nunes DSS, Coutinho FMB (2002) Acrylonitrile-divinylbenzene copolymer beads: influence of pre-polymerization step, stirring conditions and polymerization initiator type on the polymer particle characteristics. Eur Polym J 38:1159–1165

    Article  CAS  Google Scholar 

  20. Habiba U, Siddique TA, Talebian S, Lee JJL, Salleh A, Ang BC, Afifi AM (2017) Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions. Carbohydr Polym 177:32–39

    Article  CAS  PubMed  Google Scholar 

  21. Panthi G, Park SJ, Chae SH, Kim TW, Chung HJ, Hong ST, PArk M, Kim HY (2017) Immobilization of Ag3PO4 nanoparticles on electrospun PAN nanofibers via surface oximation: bifunctional composite membrane with enhanced photocatalytic and antimicrobial activities. J Ind Eng Chem 45:277–286

    Article  CAS  Google Scholar 

  22. Saeed K, Haider S, Oh TJ, Park SY (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Membr Sci 322:400–405

    Article  CAS  Google Scholar 

  23. Yu Z, Dang Q, Liu C, Cha D, Zhang H, Zhu W, Zhang Q, Fan B (2017) Preparation and characterization of poly(maleic acid)-grafted cross–linked chitosan microspheres for Cd(II) adsorption. Carbohydr Polym 172:28–39

    Article  CAS  PubMed  Google Scholar 

  24. Xie Y, Wang J, Wang M, Ge X (2015) Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution. J Hazard Mater 297:66–73

    Article  CAS  PubMed  Google Scholar 

  25. Sahraei R, Ghaemy M (2017) Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr Polym 157:823–833

    Article  CAS  PubMed  Google Scholar 

  26. Zhu Y, Zheng Y, Wang F, Wang A (2016) Monolithic supermacroporous hydrogel prepared from high internal phase emulsions (HIPEs) for fast removal of Cu2+ and Pb2+. Chem Eng J 284:422–430

    Article  CAS  Google Scholar 

  27. Yue YF, Mayes RT, Gill G, Kuo LJ, Wood J, Binder A, Brown S, Dai S (2015) Macroporous monoliths for trace metal extraction from seawater. Rsc Adv 5:50005–50010

    Article  CAS  Google Scholar 

  28. Kampalanonwat P, Supaphol P (2010) Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl Mater Interfaces 2:3619–3627

    Article  CAS  PubMed  Google Scholar 

  29. Lutfor MR, Silong S, Zin WM, Ab Rahman MZ, Ahmad M, Haron J (2000) Preparation and characterization of poly(amidoxime) chelating resin from polyacrylonitrile grafted sago starch. Eur Polym J 36:2105–2113

    Article  CAS  Google Scholar 

  30. Huang F, Xu Y, Liao S, Yang D, Hsieh YL, Wei Q (2013) Preparation of amidoxime polyacrylonitrile chelating nanofibers and their application for adsorption of metal ions. Materials (Basel) 6:969–980

    Article  CAS  Google Scholar 

  31. Park HB, Lee CH, Sohn JY, Lee YM, Freeman BD, Kim HJ (2006) Effect of cross–linked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. J Memb Sci 285:432–443

    Article  CAS  Google Scholar 

  32. Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci 152:2–13

    Article  CAS  PubMed  Google Scholar 

  33. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275

    Article  CAS  Google Scholar 

  34. Mohammadnezhad G, Soltani R, Abad S, Dinari M (2017) A novel porous nanocomposite of aminated silica MCM-41 and nylon-6: isotherm, kinetic, and thermodynamic studies on adsorption of Cu(II) and Cd(II). J Appl Polym Sci 134:1–12

    Article  CAS  Google Scholar 

  35. Suzuki T, Saito K, Sugo T, Ogura H, Oguma K (2000) Fractional elution and determination of uranium and vanadium adsorbed on amidoxime fiber from seawater. Anal Sci 16:429–432

    Article  CAS  Google Scholar 

  36. Das S, Oyola Y, Mayes RT, Janke CJ, Kuo LJ, Gill G, Wood JR, Dai S (2016) Extracting uranium from seawater: promising AI series adsorbents. Ind Eng Chem Res 55:4103–4109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawei Zou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 989 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Wang, L., Liang, M. et al. Cross-linked polyvinyl amidoxime fiber: a highly selective and recyclable adsorbent of gallium from Bayer liquor. Iran Polym J 27, 589–597 (2018). https://doi.org/10.1007/s13726-018-0635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0635-4

Keywords

Navigation