Skip to main content

Advertisement

Log in

Aluminum oxide particles/silicon carbide whiskers’ synergistic effect on thermal conductivity of high-density polyethylene composites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Aluminum oxide (Al2O3) particles and silicon carbide (SiC) whiskers improved the thermal conductivity of high-density polyethylene (HDPE). To improve the dispersion of inorganic fillers in the matrix, 5 wt% of maleic anhydride-modified polyethylene was added into HDPE as a compatibilizer, and the hybrid matrix was denoted as mHDPE. The thermal conductivity, heat resistance, and tensile properties of resulting HDPE composites were characterized. The results showed that the thermal conductivity reached its maximum value of 0.8876 W/(m K) at 1/4 weight ratio of Al2O3/SiC, which was 110.3, 54.8, and 8.8% higher than that of pure HDPE, mHDPE/Al2O3, and mHDPE/SiC composites, in the order given, indicating that hybrid fillers have synergistic effect on the thermal conductivity of HDPE composites. Moreover, they also have a synergistic effect on the heat resistance and Young’s modulus. As the SiC content increases, the heat resistance of the composites increases at first and then falls, and the maximum VST is reached at an Al2O3/SiC weight ratio of 3/2, which is 5.4 °C higher than that of HDPE. The maximum Young’s modulus of the composites (1160 MPa) is obtained at an Al2O3/SiC weight ratio of 1/4, and the yield strength increases gradually as the SiC whiskers’ content increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

  2. Yu GC, Wu LZ, Feng LJ, Yang W (2016) Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Compos Struct 149:213–219

    Article  Google Scholar 

  3. Karim MR, Lee CJ, Mu SL (2010) Synthesis and characterization of conducting polyaniline-activated carbon nanocomposites. J Appl Polym Sci 103:1973–1977

    Article  Google Scholar 

  4. Chen C, Wang H, Xue Y, Xue Z, Liu H, Xie X, Mai YW (2016) Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites. Compos Sci Technol 128:207–214

    Article  CAS  Google Scholar 

  5. Carlberg B, Ye LL, Liu J (2012) Polymer-metal nanofibrous composite for thermal management of microsystems. Mater Lett 75:229–232

    Article  CAS  Google Scholar 

  6. Yu S, Lee JW, Han TH, Park C, Kwon Y, Hong SM, Koo CM (2013) Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl Mater Interfaces 5:11618–11622

    Article  CAS  Google Scholar 

  7. Krupa I, Boudenne A, Ibos L (2007) Thermophysical properties of polyethylene filled with metal coated polyamide particles. Eur Polym J 43:2443–2452

    Article  CAS  Google Scholar 

  8. Pan Y, Liu X, Hao X, Starý Z, Schubert DW (2016) Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology. Eur Polym J 78:106–115

    Article  CAS  Google Scholar 

  9. Zhou S, Chen Y, Zou H, Liang M (2013) Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends. Thermochim Acta 566:84–91

    Article  CAS  Google Scholar 

  10. Park HJ, Badakhsh A, Im IT, Kim MS, Park CW (2016) Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Appl Therm Eng 107:907–917

    Article  CAS  Google Scholar 

  11. Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2013) Thermal conductivity of polymeric composites: a review. In: IEEE ICSD, p 678–681

  12. Kozako M, Okazaki Y, Hikita M, Tanaka T(2010)Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity. In: IEEE International Conference on Solid Dielectrics, p 1–4

  13. Li B, Li R, Xie Y (2017) Properties and effect of preparation method of thermally conductive polypropylene/aluminum oxide composite. J Mater Sci 52:2524–2533

    Article  CAS  Google Scholar 

  14. Efimov VB, Makova MK, Mezhovdeglin LP (1977) Thermal conductivity of organic superconductors. In: International conference on materials and mechanisms of superconductivity, p 1903–1904

  15. Gu J, Guo Y, Lv Z, Geng W, Zhang Q (2015) Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos A 78:95–101

    Article  CAS  Google Scholar 

  16. Hu M, Feng J, Ng KM (2015) Thermally conductive PP/AlN composites with a 3-D segregated structure. Compos Sci Technol 110:26–34

    Article  CAS  Google Scholar 

  17. Kim K, Yoo M, Ahn K, Kim J (2015) Thermal and mechanical properties of AlN/BN-filled PVDF composite for solar cell backsheet application. Ceram Int 41:179–187

    Article  CAS  Google Scholar 

  18. Kusunose T, Yagi T, Firoz SH, Sekino T (2013) Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity. J Mater Chem A1:3440–3445

    Article  Google Scholar 

  19. Ramdani N, Derradji M, Feng TT, Tong Z, Wang J, Mokhnache EO, Liu WB (2015) Preparation and characterization of thermally-conductive silane-treated silicon nitride filled polybenzoxazine nanocomposites. Mater Lett 155:34–37

    Article  CAS  Google Scholar 

  20. Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H (2009) A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos A 40:830–836

    Article  Google Scholar 

  21. Song WL, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, Sun YP (2012) Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51:6498–6501

    Article  CAS  Google Scholar 

  22. Muratov DS, Kuznetsov DV, Il’inykh IA, Burmistrov IN, Mazov IN (2015) Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Compos Sci Technol 111:40–43

    Article  CAS  Google Scholar 

  23. Xiao YJ, Wang WY, Chen XJ, Lin T, Zhang YT, Yang JH, Wang Y, Zhou ZW (2016) Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos A 90:614–625

    Article  CAS  Google Scholar 

  24. Lee GW, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos A 37:727–734

    Article  Google Scholar 

  25. Fu J, Shi L, Zhang D, Zhong Q, Chen Y (2010) Effect of nanoparticles on the performance of thermally conductive epoxy adhesives. Polym Eng Sci 50:1809–1819

    Article  CAS  Google Scholar 

  26. Teng CC, Ma CCM, Chiou KC, Lee TM, Shih YF (2011) Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys 126:722–728

    Article  CAS  Google Scholar 

  27. Zhou T, Wang X, Liu X, Xiong D (2010) Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon 48:1171–1176

    Article  CAS  Google Scholar 

  28. Xu Y, Chung DDL, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos A 32:1749–1757

    Article  Google Scholar 

  29. Yuan FY, Zhang HB, Li X, Li XZ, Yu ZZ (2013) Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos A 53:137–144

    Article  CAS  Google Scholar 

  30. Chen CH, Jian JY, Yen FS (2009) Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos A 40:463–468

    Article  Google Scholar 

  31. Zhou T, Wang X, Mingyuan GU, Liu X (2008) Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer 49:4666–4672

    Article  CAS  Google Scholar 

  32. Fu JF, Shi LY, Zhong QD, Chen Y, Chen LY (2011) Thermally conductive and electrically insulative nanocomposites based on hyperbranched epoxy and nano-Al2O3 particles modified epoxy resin. Polym Adv Technol 22:1032–1041

    Article  CAS  Google Scholar 

  33. Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430:155–165

    Article  CAS  Google Scholar 

  34. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  35. Choy CL, Fei Y, Xi TG (2010) Thermal conductivity of gel-spun polyethylene fibers. J Polym Sci 31:365–370

    Article  Google Scholar 

  36. Kurabayashi K (2001) Anisotropic thermal properties of solid polymers. Int J Thermophys 22:277–288

    Article  CAS  Google Scholar 

  37. Li L, Chung DDL (1994) Thermally conducting polymer-matrix composites containing both AIN particles and SiC whiskers. J Electron Mater 23:557–564

    Article  CAS  Google Scholar 

  38. Zhou W, Yu D, Min C, Fu Y, Guo X (2009) Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. J Appl Polym Sci 112:1695–1703

    Article  CAS  Google Scholar 

  39. Li M, Wan Y, Gao Z, Xiong G, Wang X, Wan C, Luo H (2013) Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers. Mater Des 51:257–261

    Article  CAS  Google Scholar 

  40. Wang L, Sheng J (2005) Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer 46:6243–6249

    Article  CAS  Google Scholar 

  41. Yang L, Sun D, Li Y, Liu G, Gao J (2010) Properties of poly(vinyl chloride) blended with an emulsion copolymer of N-cyclohexylmaleimide and methyl methacrylate. J Appl Polym Sci 88:201–205

    Article  Google Scholar 

  42. Yuan W, Cui J, Xu S (2016) Mechanical properties and interfacial interaction of modified calcium sulfate whisker/poly(vinyl chloride) composites. J Mater Sci Technol 32:1352–1360

    Article  Google Scholar 

  43. Wang KT, He Y, Song XL, Cui XM (2015) Effects of the metakaolin-based geopolymer on high-temperature performances of geopolymer/PVC composite materials. Appl Clay Sci 114:586–592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially sponsored by the National Nature Science Foundation of China (U1507123), the Foundation of Qinghai Science and Technology Department (2017-HZ-803), Thousand Talents Program of Qinghai Province, and Kunlun Scholar Award Program of Qinghai Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Xu, S. Aluminum oxide particles/silicon carbide whiskers’ synergistic effect on thermal conductivity of high-density polyethylene composites. Iran Polym J 27, 339–347 (2018). https://doi.org/10.1007/s13726-018-0614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0614-9

Keywords

Navigation