Skip to main content
Log in

Phosphorylated cardanol prepolymer grafted guayule natural rubber: an advantageous green natural rubber

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Natural rubber (HNR), produced from Hevea Brasiliensis, is being considered as the major source of 99.9% 1,4-cis-polyisoprene. Till date, this grade of natural rubber is not manufactured synthetically even using sophisticated solution polymerization techniques and utilizing the most advanced catalyst systems. Rubber industries have been continuously thriving for an alternative as well as an additional source of natural rubber to compensate for the reduction in production of Hevea natural rubber and to reduce the consumption of petroleum-based rubbers. The present study deals with chemical grafting of phosphorylated cardanol prepolymer (PCP) onto the main chain of guayule natural rubber (GNR), which could impart inherent multifunctional characteristics to the rubber. The grafting of PCP onto GNR was carried out successively using benzoyl peroxide as a free radical initiator in the solution stage and the grafting parameters have been optimized through the Taguchi method using grafting efficiency and percent grafting. Grafting of PCP onto GNR (PCP-g-GNR) was confirmed through UV–Visible, FTIR, NMR and GPC analysis. Thermal behavior of PCP-g-GNR indicates a significant increase in thermo-oxidative stability and it also displays a slight depression of glass transition temperature as compared to GNR. The viscoelastic characteristics of GNR also alter and cure characteristic improves drastically in giving rise to improved processability after grafting of the PCP. The unfilled PCP-g-GNR vulcanizates show approximately similar physico-mechanical properties with 5 phr processing oil as plasticized GNR vulcanizates. Therefore, PCP-g-GNR can be used in rubber industries as gum rubber materials as it reduces the usage of processing aids significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rodríguez DJ, Angulo-Sánchez JL, Rodríguez-García R (2006) Mexican high rubber producing guayule shrubs: a potential source for commercial development. J Polym Environ 14:37–47

    Article  Google Scholar 

  2. Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365

    Article  CAS  Google Scholar 

  3. Ray DT (1993) Guayule: A source of natural rubber. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 338–342

  4. Buranov AU, Elmuradov BJ (2009) Extraction and characterization of latex and natural rubber from rubber-bearing plants. J Agric Food Chem 58:734–743

    Article  Google Scholar 

  5. van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529

    Article  Google Scholar 

  6. McMahan C, Kostyal D, Lhamo D, Cornish K (2015) Protein influences on guayule and Hevea natural rubber sol and gel. J Appl Polym Sci 132:42051–42057

    Article  Google Scholar 

  7. Cornish K, Wood DF (2002) Visualization of the malleability of the rubber core of rubber particles from Parthenium argentatum Gray and other rubber-producing species under extremely cold temperatures. J Polym Environ 10:155–162

    Article  CAS  Google Scholar 

  8. Finlay MR (2009) Growing American Rubber: Strategic plants and the politics of national security. Studies in Modern Science, Technology, and the Environment Series. Rutgers University Press, New Brunswick. http://www.jstor.org/stable/j.ctt5hhx8h

  9. Foster M, Coffelt T (2005) Guayule agronomics: establishment, irrigated production, and weed control. Ind Crops Prod 22:27–40

    Article  Google Scholar 

  10. Verbiscar AJ, Banigan TF (1989) Guayule rubber, resin and bagasse recovery and purification processes. Patent US4804741A

  11. Thuong TT, Yamamoto NO, Nghia PT, Cornish K, Kawahara S (2017) Effect of naturally occurring crosslinking junctions on green strength of natural rubber. Polym Adv Technol 28:303–311

    Article  CAS  Google Scholar 

  12. Ikeda Y, Junkong P, Ohashi T, Phakkeeree T, Sakaki Y, Tohsan A, Kohjiyad S, Cornish K (2016) Strain-induced crystallization behaviour of natural rubbers from guayule and rubber dandelion revealed by simultaneous time-resolved WAXD/tensile measurements: indispensable function for sustainable resources. RSC Adv 6:95601–95610

    Article  CAS  Google Scholar 

  13. Ramos-De Valle LF (1981) Vulcanization of guayule rubber. Rubber Chem Technol 54:24–33

    Article  CAS  Google Scholar 

  14. Ramos-DeValle LF, Ramirez R (1982) Thermoplastic-guayule rubber blends-compositions and mechanical properties. Rubber Chem Technol 55:1328–1340

    Article  CAS  Google Scholar 

  15. Barrera CS, Cornish K (2016) High performance waste-derived filler/carbon black reinforced guayule natural rubber composites rubber. Ind Crops Prod 86:132–142

    Article  CAS  Google Scholar 

  16. Barrera CS, Cornish K (2015) Novel mineral and organic materials from agro-industrial residues as fillers for natural rubber. J Polym Environ 23:437–448

    Article  CAS  Google Scholar 

  17. Gupta S, Mendon SK, Thames SF (2001) Applications of epoxidized and hydroxy-fluoroester pendent secondary high-molecular-weight guayule rubber in coatings. J Appl Polym Sci 82:1718–1724

    Article  CAS  Google Scholar 

  18. Gupta S, Mendon SK, Thames SF (2004) Weathering studies of epoxidized and hydroxy-fluoroester pendent guayule rubber in powder coatings. J Appl Polym Sci 92:493–497

    Article  CAS  Google Scholar 

  19. Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4:1–17

    Article  CAS  Google Scholar 

  20. Thakur VK, Singha AS, Thakur MK (2012) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Article  CAS  Google Scholar 

  21. Mahata D, Prabhavale O, Samantarai S, Maity H, Ahindra N, Nando GB (2017) Functionalization of styrene–butadiene rubber with meta-pentadecenyl phenol for better processing: a multifunctional additive and renewable resource. J Appl Polym Sci 134:45150–45160

    Article  Google Scholar 

  22. Menon ARR (1999) Melt-rheology of natural rubber modified with phosphorylated cashew nut shell liquid prepolymer- a comparative study with spindle oil. Iran Polym J 8:167–173

    CAS  Google Scholar 

  23. Menon ARR, Pillai CKS, Nando GB (1998) Vulcanization of natural rubber modified with cashew nut shell liquid and its phosphorylated derivative- a comparative study. Polymer 39:4033–4036

    Article  CAS  Google Scholar 

  24. Menon ARR (1997) Flame-retardant characteristics of natural rubber modified with a bromoderivative of phosphorylated cashew nut shell liquid. Polymer 15:3–13

    CAS  Google Scholar 

  25. Mohapatra S, Alex R, Nando GB (2016) Cardanol grafted natural rubber: a green substitute to natural rubber for enhancing silica filler dispersion. J Appl Polym Sci 133:493–497

    Article  Google Scholar 

  26. Mahata D, Mandal SM, Bharti R, Gupta VK, Mandal M, Nag A, Nando GB (2014) Self-assembled cardanolazo derivatives as antifungal agent with chitin-binding ability. Int J Biol Macromol 69:5–11

    Article  CAS  Google Scholar 

  27. Pillai C, Prasad V, Sudha J, Bera S, Menon A (1990) Polymeric resins from renewable resources. II. Synthesis and characterization of flame retardant prepolymers from cardanol. J Appl Polym Sci 41:2487–2501

    Article  CAS  Google Scholar 

  28. Taguchi G, Konishi S (2007) Orthogonal arrays and linear graphs: tools for quality engineering. Taguchi’s Quality Engineering Handbook. Wiley, New York

    Google Scholar 

  29. Dung AT, Nhan TN, Thoung TN, Nghia TP, Yamamoto Y, Kougi K, Kawahara S, Thuy TT (2017) Modification of Vietnam natural rubber via graft copolymerization with styrene. J Braz Chem Soc 28:669–675

    CAS  Google Scholar 

  30. Ma HX, Li JJ, Qiu JJ, Liu Y, Liu CM (2017) Renewable cardanol-based star-shaped prepolymer containing a phosphazene core as a potential biobased green fire-retardant coating. ACS Sustain Chem Eng 5:350–359

    Article  CAS  Google Scholar 

  31. Christiansen SC, Hedin N, Epping JD, Janicke MT, del Amo Y, Demarest M, Brzezinski M, Chmelka BF (2006) Sensitivity considerations in polarization transfer and filtering using dipole-dipole couplings: implications for biomineral systems. Solid State Nucl Magn Reson 29:170–182

    Article  CAS  Google Scholar 

  32. Kitamura M, Hata Y, Yasuoka H, Kurotsu T, Asano A (2012) Strain-induced 13C chemical shift change of natural rubber. Polym J 44:778–785

    Article  CAS  Google Scholar 

  33. Kobayashi T, Lafon O, Thankamony ASL, Slowing II, Kandel K, Carnevale D, Vitzthum V, Vezin H, Amoureux JP, Bodenhausen G (2013) Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys 15:5553–5562

    Article  CAS  Google Scholar 

  34. Mohapatra S, Nando GB (2014) Cardanol: a green substitute for aromatic oil as a plasticizer in natural rubber. RSC Adv 4:15406–15418

    Article  CAS  Google Scholar 

  35. Gosens JC, Pratt CF, Savenije HB, Claesen CA (1993) Polymer mixture having aromatic polycarbonate, styrene containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom. Patent US 5204394

  36. Liu YL, Hsiue GH, Chiu YS (1997) Synthesis, characterization, thermal, and flame retardant properties of phosphate based epoxy resins. J Polym Sci A: Polym Chem 35:565–574

    Article  CAS  Google Scholar 

  37. Vikram T, Nando G (2007) Synthesis and characterization of cardanol grafted natural rubber—the solution technique. J Appl Polym Sci 105:1280–1288

    Article  CAS  Google Scholar 

  38. David D, Rotstein N, Sincock T (1994) The application of miscibility parameter to the measurement of polymer-plasticizer compatibility. Polym Bull 33:725–732

    Article  CAS  Google Scholar 

  39. Heymans N (2000) A novel look at models for polymer entanglement. Macromolecules 33:4226–4234

    Article  CAS  Google Scholar 

  40. Lee HD, Kim JH, Park JH, Yoon JY, Park KU, Vo TH (2016) Novel cardanol-based organic vulcanizing agent, method for preparing the same, and rubber compound composition for tires using the same. Patent US 20160130421 A1

  41. Menon A, Pillai C, Nando G (1994) Chemical crosslink density and network structure of natural rubber vulcanizates modified with phosphorylated cardnol prepolymer. J Appl Polym Sci 51:2157–2164

    Article  CAS  Google Scholar 

  42. Brüning K, Schneider K, Roth SV, Heinrich G (2012) Kinetics of strain-induced crystallization in natural rubber studied by WAXD: dynamic and impact tensile experiments. Macromolecules 45:7914–7919

    Article  Google Scholar 

  43. Mohamed R, Zain NW, Faiza A, Norizan MN (2013) Effect of epoxidized oil on tensile and tear strength of NR vulcanizate and its comparison with aromatic oil NR vulcanizates. Adv Mater Res 812:204–209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Golok B. Nando or Santanu Chattopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanania, S., Mahata, D., Prabhavale, O. et al. Phosphorylated cardanol prepolymer grafted guayule natural rubber: an advantageous green natural rubber. Iran Polym J 27, 307–318 (2018). https://doi.org/10.1007/s13726-018-0611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0611-z

Keywords

Navigation