Iranian Polymer Journal

, Volume 27, Issue 5, pp 297–306 | Cite as

Amphiphilic comb-like pentablock copolymers of Pluronic L64 and poly(ethylene glycol)methyl ether methacrylate: synthesis by ATRP, self-assembly, and clouding behavior

  • Tamina Perveen
  • Shakir Ullah
  • Mohammad Siddiq
  • Syed Mujtaba Shah
  • Asad Muhammad Khan
  • Hazrat Hussain
Original Research
  • 45 Downloads

Abstract

Well-defined amphiphilic comb-like pentablock copolymers based on Pluronic L64 (PEO13-b-PPO30-b-PEO13) and poly(ethylene glycol)methyl ether methacrylate (PEGMA) have been successfully synthesized via atom transfer radical polymerization (ATRP). The L64 is transformed into ATRP macroinitiator and chain extended with PEGMA under typical ATRP conditions to achieve comb-like pentablock copolymers of various compositions. Due to their amphiphilic nature, the block copolymers could form self-assembled structures in aqueous solutions as confirmed by dynamic light scattering. At higher PEGMA content in the synthesized copolymer, however, the critical aggregation concentration (CAC) is less pronounced that could be attributed to the increased hydrophilicity and steric hindrance of PEG side chains of the PEGMA, thus preventing the formation of well-defined micellar aggregates, and probably leads to open-shell aggregation mechanism. The lower critical solution temperature (LCST) of the synthesized block copolymers is found higher than the neat L64 and increased with increasing the PEGMA content. Further, tuning the clouding behavior could be achieved with inorganic additives (KBr and K2SO4). The influence of SO42− and Br1− on LCST is according to their position in Hofmeister series. Interestingly, the effect of additives is more pronounced above the CAC of the copolymer, suggesting that the nanoaggregates in solution induce the macrophase separation.

Keywords

ATRP Self-association Cloud point Amphiphilic block copolymers Comb-like 

Notes

Acknowledgements

Hazrat Hussain gratefully acknowledges the financial support from QAU under URF scheme.

References

  1. 1.
    Ashraf U, Chat OA, Maswal M, Jabeen S, Dar AA (2015) An investigation of Pluronic P123–sodium cholate mixed system: micellization, gelation and encapsulation behavior. RSC Adv 5:83608–83618CrossRefGoogle Scholar
  2. 2.
    He Z, Alexandridis P (2018) Micellization thermodynamics of Pluronic P123 (EO20PO70EO20) amphiphilic block copolymer in aqueous ethylammonium nitrate (EAN) solutions. Polymers 10:1–18CrossRefGoogle Scholar
  3. 3.
    de Lima CM, Siqueira SMC, de Amorim AFV, Costa KBS, de Brito DHA, Ribeiro MENP, Ricardo NMPS, Chaibunditc C, Yeates SG, Ricardo NMPS (2015) Effects of polypropylene glycol 400 (PPG400) on the micellization and gelation of Pluronic F127. Macromolecules 48:7978–7982CrossRefGoogle Scholar
  4. 4.
    Liu T, Wu C, Xie Y, Liang D, Zhou S, Nace VM, Chu B (2000) Amphiphilic polyoxyalkylene triblock copolymers: self-assembly, phase behaviors, and new applications. In: ACS Symp Ser, 765th edn. Am. Chem. Soc., Washington DC, pp 2–20Google Scholar
  5. 5.
    Parhi R (2016) Development and optimization of Pluronic® F127 and HPMC based thermosensitive gel for the skin delivery of metoprolol succinate. J Drug Deliv Sci Technol 36:23–33CrossRefGoogle Scholar
  6. 6.
    Zhao LY, Zhang WM (2017) Recent progress in drug delivery of Pluronic P123: pharmaceutical perspectives. J Drug Target 25:471–484CrossRefGoogle Scholar
  7. 7.
    Demirci S, Doğan A, Başak Türkmen N, Telci D, Çağlayan AB, Beker MÇ, Kiliç E, Özkan F, Dede B, Şahin F (2017) Poloxamer P85 increases anticancer activity of Schiff base against prostate cancer in vitro and in vivo. Anticancer Drug 28:869–879CrossRefGoogle Scholar
  8. 8.
    Chowdhury P, Nagesh PKB, Kumar S, Jaggi M, Chauhan SC, Yallapu MM (2017) Pluronic nanotechnology for overcoming drug resistance. In: Yan B, Zhou H, Gardea-Torresdey JL (eds) Bioactivity of engineered nanoparticles. Springer, Singapore, pp 207–237CrossRefGoogle Scholar
  9. 9.
    Ullah S, Khan AZ, Ullah A, Muhammad S, Iqbal Z, Ali Z, Shah SM, Siddiq M, Hussain H (2015) Synthesis and characterization of pentablock copolymers based on Pluronic® L64 and poly(methyl methacrylate). Polym Sci Ser B 57:659–668CrossRefGoogle Scholar
  10. 10.
    Gorrasi G, Stanzione M, Izzo L (2011) Synthesis and characterization of novel star-like PEO–PMMA based copolymers. React Funct Polym 71:23–29CrossRefGoogle Scholar
  11. 11.
    Gjerde N, Zhu K, Nystrom B, Knudsen KD (2018) Effect of PCL end-groups on the self-assembly process of Pluronic in aqueous media. Phys Chem Chem Phys 20:2585–2596CrossRefGoogle Scholar
  12. 12.
    Bromberg L (1998) Self-assembly in aqueous solutions of polyether-modified poly(acrylic acid). Langmuir 14:5806–5812CrossRefGoogle Scholar
  13. 13.
    Xiong XY, Tam KC, Gan LH (2003) Synthesis and aggregation behavior of Pluronic F127/poly(lactic acid) block copolymers in aqueous solutions. Macromolecules 36:9979–9985CrossRefGoogle Scholar
  14. 14.
    Huang SJ, Wang TP, Lue SI, Wang LF (2013) Pentablock copolymers of Pluronic F127 and modified poly(2-dimethylamino)ethyl methacrylate for internalization mechanism and gene transfection studies. Int J Nanomed 8:2011–2027Google Scholar
  15. 15.
    Ha JC, Kim SY, Lee YM (1999) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. I. Preparation and characterization. J Control Rel 62:381–392CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Lam YM (2005) Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(vinyl pyrrolidone): synthesis and characterization. J Colloid Interface Sci 285:80–85CrossRefGoogle Scholar
  17. 17.
    He J, Ni P, Liu C (2008) Synthesis and characterization of amphiphilic fluorinated pentablock copolymers based on Pluronic F127. J Polym Sci Part A Polym Chem 46:3029–3041CrossRefGoogle Scholar
  18. 18.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990CrossRefGoogle Scholar
  19. 19.
    Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039CrossRefGoogle Scholar
  20. 20.
    Matyjaszewski K, Hongchen D, Jakubowski W, Pietrasik J, Kusumo A (2007) Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 23:4528–4531CrossRefGoogle Scholar
  21. 21.
    Mueller L, Jakubowski W, Tang W, Matyjaszewski K (2007) Successful chain extension of polyacrylate and polystyrene macroinitiators with methacrylates in an ARGET and ICAR ATRP. Macromolecules 40:6464–6472CrossRefGoogle Scholar
  22. 22.
    Krys P, Wang Y, Matyjaszewski K, Harrisson S (2016) Radical generation and termination in SARA ATRP of methyl acrylate: effect of solvent, ligand, and chain length. Macromolecules 49:2977–2984CrossRefGoogle Scholar
  23. 23.
    Chmielarz P, Król P (2016) PSt-b-PU-b-PSt copolymers using tetraphenylethane-urethane macroinitiator through SARA ATRP. Express Polym Lett 10:302–310CrossRefGoogle Scholar
  24. 24.
    Chmielarz P, Krys P, Park S, Matyjaszewski K (2015) PEO-b-PNIPAM copolymers via SARA ATRP and eATRP in aqueous media. Polymer (Guildf) 71:143–147CrossRefGoogle Scholar
  25. 25.
    Chmielarz P (2016) Synthesis of α-d-glucose-based star polymers through simplified electrochemically mediated ATRP. Polymer 102:192–198CrossRefGoogle Scholar
  26. 26.
    Chmielarz P, Fantin M, Park S, Isse AA, Gennaro A, Magenau AJD, Sobkowiak A, Matyjaszewski K (2017) Electrochemically mediated atom transfer radical polymerization (eATRP). Prog Polym Sci 69:47–78CrossRefGoogle Scholar
  27. 27.
    Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K (2016) Photomediated controlled radical polymerization. Prog Polym Sci 62:73–125CrossRefGoogle Scholar
  28. 28.
    Determan MD, Guo L, Thiyagarajan P, Mallapragada SK (2006) Supramolecular self-assembly of multiblock copolymers in aqueous solution. Langmuir 22:1469–1473CrossRefGoogle Scholar
  29. 29.
    Determan MD, Cox JP, Seifert S, Thiyagarajan P, Mallapragada SK (2005) Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer 46:6933–6946CrossRefGoogle Scholar
  30. 30.
    Determan MD, Guo L, Lo CT, Thiyagarajan P, Mallapragada SK (2008) pH- and temperature-dependent phase behavior of a PEO-PPO-PEO-based pentablock copolymer in aqueous media. Phys Rev E Stat Nonlinear Soft Matter Phys 78:21802CrossRefGoogle Scholar
  31. 31.
    Peleshanko S, Anderson KD, Goodman M, Determan MD, Mallapragada SK, Tsukruk VV (2007) Thermoresponsive reversible behavior of multistimuli Pluronic-based pentablock copolymer at the air-water interface. Langmuir 23:25–30CrossRefGoogle Scholar
  32. 32.
    Mei A, Guo X, Ding Y, Zhang X, Xu J, Fan Z, Du B (2010) PNIPAm-PEO-PPO-PEO-PNIPAm pentablock terpolymer: synthesis and chain behavior in aqueous solution. Macromolecules 43:7312–7320CrossRefGoogle Scholar
  33. 33.
    Dou Q, Karim AA, Loh XJ (2016) Modification of thermal and mechanical properties of PEG–PPG–PEG copolymer (F127) with MA-POSS. Polymers 8:1–14CrossRefGoogle Scholar
  34. 34.
    Cheng Z, Zhu X, Kang ET, Neoh KG (2005) Brush-type amphiphilic diblock copolymers from ‘living’/controlled radical polymerizations and their aggregation behavior. Langmuir 21:7180–7185CrossRefGoogle Scholar
  35. 35.
    Tan BH, Hussain H, Liu Y, He CB, Davis TP (2010) Synthesis and self-assembly of brush-type poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly(pentafluorostyrene) amphiphilic diblock copolymers in aqueous solution. Langmuir 26:2361–2368CrossRefGoogle Scholar
  36. 36.
    Bes L, Angot S, Limer A, Haddleton DM (2003) Sugar-coated amphiphilic block copolymer micelles from living radical polymerization : recognition by immobilized lectins. Macromolecules 36:2493–2499CrossRefGoogle Scholar
  37. 37.
    Grinberg VY, Burova TV, Grinberg NV, Dubovik AS, Papkov VS, Khokhlov AR (2015) Energetics of LCST transition of poly(ethylene oxide) in aqueous solutions. Polymer 73:86–90CrossRefGoogle Scholar
  38. 38.
    Deyerle BA, Zhang Y (2011) Effects of Hofmeister anions on the aggregation behavior of PEO-PPO-PEO triblock copolymers. Langmuir 27:9203–9210CrossRefGoogle Scholar
  39. 39.
    Bloksma MM, Bakker DJ, Weber C, Hoogenboom R, Schubert US (2010) The effect of Hofmeister salts on the LCST transition of poly(2-oxazoline)s with varying hydrophilicity. Macromol Rapid Commun 31:724–728CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes key words. Annu Rev Phys Chem 61:63–83CrossRefGoogle Scholar
  41. 41.
    Lutter JC, Wu T, Zhang Y (2013) Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers. J Phys Chem B 117:10132–10141CrossRefGoogle Scholar
  42. 42.
    Hussain H, Mya KY, He C (2008) Self-assembly of brush-like poly[poly(ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization. Langmuir 24:13279–13286CrossRefGoogle Scholar
  43. 43.
    Li X, Ji J, Shen J (2006) Synthesis of hydroxyl-capped comb-like poly(ethylene glycol) to develop shell cross-linkable micelles. Polymer (Guildf) 47:1987–1994CrossRefGoogle Scholar
  44. 44.
    Li X, Ji J, Shen J (2006) Spontaneous vesicle formation in aqueous solutions of comb-like PEG. Macromol Rapid Commun 27:214–218CrossRefGoogle Scholar
  45. 45.
    Matanović MR, Kristl J, Grabnar PA (2014) Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm 472:262–275CrossRefGoogle Scholar
  46. 46.
    Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10:99–107CrossRefGoogle Scholar
  47. 47.
    Wu Y, Liu X, Wang Y, Guo Z, Feng Y (2012) Synthesis and aggregation behaviors of well-defined thermoresponsive pentablock terpolymers with tunable LCST. Macromol Chem Phys 213:1489–1498CrossRefGoogle Scholar
  48. 48.
    Chen J, Liu M, Gong H, Huang Y, Chen C (2011) Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry. J Phys Chem B 115:14947–14955CrossRefGoogle Scholar
  49. 49.
    Hoogenboom R, Thijs HML, Jochems MJHC, van Lankvelt BM, Fijten MWM, Schubert (2008) Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem Commun (44):5758–5760.  https://doi.org/10.1039/b813140f
  50. 50.
    Ataman M (1987) Properties of aqueous salt solutions of poly(ethylene oxide). Cloud points, θ temperatures. Colloid Polym Sci 265:19–25CrossRefGoogle Scholar
  51. 51.
    Amado E, Augsten C, Mäder K, Blume A, Kressler J (2006) Amphiphilic water soluble triblock copolymers based on poly(2,3-dihydroxypropyl methacrylate) and poly(propylene oxide): synthesis by atom transfer radical polymerization and micellization in aqueous solutions. Macromolecules 39:9486–9496CrossRefGoogle Scholar
  52. 52.
    Mata JP, Majhi PR, Guo C, Liu HZ, Bahadur P (2005) Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J Colloid Interface Sci 292:548–556CrossRefGoogle Scholar
  53. 53.
    Patel T, Bahadur P, Mata J (2010) The clouding behaviour of PEO-PPO based triblock copolymers in aqueous ionic surfactant solutions: a new approach for cloud point measurements. J Colloid Interface Sci 345:346–350CrossRefGoogle Scholar
  54. 54.
    Pandya K, Lad K, Bahadur P (1993) Effect of additives on the clouding behavior of an ethylene oxide-propylene oxide block copolymer in aqueous solution. J Macromol Sci Part A 30:1–18CrossRefGoogle Scholar
  55. 55.
    Sharma R, Bahadur P (2002) Effect of different additives on the cloud point of a polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer in aqueous solution. J Surfact Deterg 5:263–268CrossRefGoogle Scholar
  56. 56.
    Collins KD, Washabaugh MW (1985) The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys 18:323–422CrossRefGoogle Scholar
  57. 57.
    Zhang Y, Cremer PS, Bayley HP, Romesberg F (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Furyk S, Bergbreiter DE, Cremer PS (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc 127:14505–14510CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2018

Authors and Affiliations

  • Tamina Perveen
    • 1
  • Shakir Ullah
    • 1
  • Mohammad Siddiq
    • 1
  • Syed Mujtaba Shah
    • 1
  • Asad Muhammad Khan
    • 2
  • Hazrat Hussain
    • 1
  1. 1.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of ChemistryCOMSATS Institute of Information TechnologyAbbottabadPakistan

Personalised recommendations