Skip to main content
Log in

TiO2–SiO2 composite nanoparticles containing hindered amine light stabilizers encapsulated by MMA–PMPM copolymers

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

TiO2–SiO2 composite nanoparticles containing hindered amine light stabilizers (HALSs) were prepared by encapsulation of commercially available TiO2–SiO2 nanoparticles using methyl methacrylate (MMA) and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (PMPM) copolymers through mini-emulsion polymerization. The Fourier transform infrared spectral analysis (FTIR) showed that the hindered amine light stabilizer PMPM was incorporated into the TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles. The X-ray photoelectron spectroscopy analysis (XPS) showed that the surface of TiO2–SiO2 nanoparticles was enriched with HALS moieties. The formation of P(MMA-co-PMPM) random copolymers on the surface of TiO2–SiO2 nanoparticles was determined by differential scanning calorimetry (DSC), and the percentage of the chemically grafted P(MMA-co-PMPM) coverage on the TiO2–SiO2 nanoparticles surface was 40.9 wt% determined by thermogravimetric analysis (TGA), which revealed that the TiO2–SiO2 nanoparticles were successfully encapsulated by MMA–PMPM copolymers. Scanning electron microscopy analysis indicated that the TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles were mainly homogeneous spherical shape particles, with an average size of about 90 nm. Rhodamine B (Rh.B) photocatalytic degradation study revealed UV-shielding characteristics for TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles and showed a remarkable decrease in photocatalytic activity of TiO2–SiO2 nanoparticles. These results indicated that TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles may be promising light stabilizers with covalent functionalization of polymeric HALS, which has little photocatalytic activity, and can be introduced into the weathering-resistant polymer materials to improve their application properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Chmela Š, Lajoie P, Hrdlovič P, Lacoste J (2000) Combined oligomeric light and heat stabilizers. Polym Degrad Stabil 71:171–177

    Article  Google Scholar 

  2. Sun GJ, Jang HJ, Kaang SY, Chae KH (2002) A new polymeric HALS: preparation of an addition polymer of DGEBA–HALS and its photostabilizing effect. Polymer 43:5855–5863

    Article  CAS  Google Scholar 

  3. Nguyen TV, Tri PN, Nguyen TD, Aidani RE, Trinh VT, Decker C (2016) Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings. Polym Degrad Stabil 128:65–76

    Article  CAS  Google Scholar 

  4. Aslzadeh MM, Abdouss M, Shoushtari AM, Ghanbari F (2016) Indirect effect of polyvinylpyrrolidone and cetyltrimethylammonium bromide on UV-blocking efficiency of TiO2@PVP-CTAB@SiO2 core-shell nanohybrid particles. J Appl Polym Sci 133:44148. doi:10.1002/app.44148

    Google Scholar 

  5. Pappas SP (1989) Weathering of coatings-formulation and evaluation. Prog Org Coat 17:107–114

    Article  CAS  Google Scholar 

  6. Cottin H, Gazeau MC, Doussin JF, Raulin F (2000) An experimental study of the photodegradation of polyoxymethylene at 122, 147 and 193 nm. J Photochem Photobiol A 135:53–64

    Article  CAS  Google Scholar 

  7. Catalan J, Fabero F, Soledad Guijarro M, Claramunt RM, Santa Maria MD, Foces-Foces MDLC, Hernandez Cano F, Elguero J, Sastre R (1990) Photoinducedintramolecular proton transfer as the mechanism of ultraviolet stabilizers: a reappraisal. J Am Chem Soc 112:747–759

    Article  CAS  Google Scholar 

  8. Lee S (2009) Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. J Appl Polym Sci 114:3652–3658

    Article  CAS  Google Scholar 

  9. Lu Z, Mao C, Meng M, Liu S, Tian Y, Yu L, Sun B, Li C (2014) Fabrication of CeO2 nanoparticle-modified silk for UV protection and antibacterial applications. J Colloid Interface Sci 435:8–14

    Article  CAS  Google Scholar 

  10. Pakdel E, Daoud WA, Sun L, Wang XG (2015) Reprint of: photostability of wool fabrics coated with pure and modified TiO2 colloids. J Colloid Interface Sci 447:191–201

    Article  CAS  Google Scholar 

  11. Allen NS, Edge M, Ortega A, Sandoval G, Liauw CM, Verran J, Stratton J, Mclntyre RB (2004) Degradation and stabilisation of polymers and coatings: nano versus pigmentarytitania particles. Polym Degrad Stabil 85:927–946

    Article  CAS  Google Scholar 

  12. Chen JH, Dai CA, Chen HJ, Chien PC, Chiu WY (2007) Synthesis of nano-sized TiO2/poly(AA-co-MMA) composites by heterocoagulation and blending with PET. J Colloid Interface Sci 308:81–92

    Article  CAS  Google Scholar 

  13. Christensen PA, Dilks A, Egerton TA, Temperley J (1999) Infrared spectroscopic evaluation of the photodegradation of paint: part I, the UV degradation of acrylic films pigmented with titanium dioxide. J Mater Sci 34:5689–5700

    Article  CAS  Google Scholar 

  14. Powell QH, Fotou GP, Kodas TT, Anderson BM (1997) Synthesis of alumina-and alumina/silica-coated titania particles in an aerosol flow reactor. Chem Mater 9:685–693

    Article  CAS  Google Scholar 

  15. Van Dyk AC, Heyns AM (1998) Dispersion stability and photo-activity of rutile (TiO2) powders. J Colloid Interface Sci 206:381–391

    Article  Google Scholar 

  16. Teleki A, Heine MC, Krumeich F, Akhtar MK, Pratsinis SE (2008) In situ coating of flame-made TiO2 particles with nanothin SiO2 films. Langmuir 24:12553–12558

    Article  CAS  Google Scholar 

  17. Li QY, Chen YF, Zeng DD, Gao WM, Wu ZJ (2005) Photocatalytic characterization of silica coated titania nanoparticles with tunable coatings. J Nanopart Res 7:295–299

    Article  Google Scholar 

  18. Chen C, Wang Y, Pan G, Wang Q (2014) Gel-sol synthesis of surface-treated TiO2 nanoparticles and incorporation with waterborne acrylic resin systems for clear UV protective coatings. J Coat Technol Res 11:785–791

    Article  CAS  Google Scholar 

  19. Gugumus F (1989) Advances in the stabilization of polyolefins. Polym Degrad Stabil 24:289–301

    Article  CAS  Google Scholar 

  20. Decker C, Masson F, Schwalm R (2004) Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings. Polym Degrad Stabil 83:309–320

    Article  CAS  Google Scholar 

  21. Kaci M, Hebal G, Touati N, Rabouhi A, Zaidi L, Djidjelli H (2004) Kinetic study of hindered amine light stabilizer photografting in poly(propylene) films under natural weathering and accelerated UV conditions: effect of additive concentration. Macromol Mater Eng 289:681–687

    Article  CAS  Google Scholar 

  22. Allen NS (1986) Recent advances in the photo-oxidation and stabilization of polymers. Chem Soc Rev 15:373–404

    Article  CAS  Google Scholar 

  23. Hodgson JL, Coote ML (2010) Clarifying the mechanism of the Denisov cycle: how do hindered amine light stabilizers protect polymer coatings from photo-oxidative degradation? Macromolecules 43:4573–4583

    Article  CAS  Google Scholar 

  24. Malík J, Ligner G, Ávár L (1998) Polymer bound HALS—expectations and possibilities. Polym Degrad Stabil 60:205–213

    Article  Google Scholar 

  25. Singh RP, Prasad AV, Pandey JK (2001) Synthesis, characterization and performance evaluation of polymeric hindered amine light stabilizers in styrenic polymers. Macromol Chem Phys 202:672–680

    Article  CAS  Google Scholar 

  26. Wilén CE, Auer M, Strandén J, Näsman JH (2000) Synthesis of novel hindered amine light stabilizers (HALS) and their copolymerization with ethylene or propylene over both soluble and supported metallocene catalyst systems. Macromolecules 33:5011–5026

    Article  Google Scholar 

  27. Auer M, Nicolas R, Vesterinen A, Luttikhedde H, Wilén CE (2004) Facile synthetic route to polymerizable hindered amine light stabilizers for transition-metal-catalyzed olefin copolymerization. J Polym Sci Pol Chem 42:1350–1355

    Article  CAS  Google Scholar 

  28. Lonkar SP, Kushwaha OS, Leuteritz A, Heinrich G, Singh RP (2012) Self photostabilizing UV-durable MWCNT/polymer nanocomposites. RSC Adv 2:12255–12262

    Article  CAS  Google Scholar 

  29. Dintcheva NT, Arrigo R, Morici E, Gambarotti C, Carroccio S, Cicogna F, Filippone G (2015) Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites. Compos Part B Eng 82:196–204

    Article  CAS  Google Scholar 

  30. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng, A 393:1–11

    Article  Google Scholar 

  31. Lü C, Cui Z, Li Z, Yang B, Shen J (2003) High refractive index thin films of ZnS/polythiourethane nanocomposites. J Mater Chem 13:526–530

    Article  Google Scholar 

  32. El-Naggar ME, Hassabo AG, Mohamed AL, Shaheen TI (2017) Surface Modification of SiO2 Coated ZnO Nanoparticles for Multifunctional Cotton Fabrics. J Colloid Interface Sci 498:413–422

    Article  CAS  Google Scholar 

  33. Pham LQ, Sohn JH, Kim CW, Park JH, Kang HS, Lee BC, Kang YS (2012) Copper nanoparticles incorporated with conducting polymer: effects of copper concentration and surfactants on the stability and conductivity. J Colloid Interface Sci 365:103–109

    Article  CAS  Google Scholar 

  34. Lin Y, Meziani MJ, Sun YP (2007) Functionalized carbon nanotubes for polymeric nanocomposites. J Mater Chem 17:1143–1148

    Article  CAS  Google Scholar 

  35. Khadem-Hosseini A, Mirabedini SM, Pazokifard S (2016) Photocatalytic activity and colloidal stability of various combinations of TiO2/SiO2 nanocomposites. J Mater Sci 51:3219–3230

    Article  CAS  Google Scholar 

  36. Ma JZ, Hu J, Zhang ZJ (2007) Polyacrylate/silica nanocomposite materials prepared by sol–gel process. Eur Polym J 43:4169–4177

    Article  CAS  Google Scholar 

  37. Liu Y, Ge C, Ren M, Yin H, Wang A, Zhang D, Liu C, Chen J, Feng H, Yao H, Jiang T (2008) Effects of coating parameters on the morphology of SiO2-coated TiO2 and the pigmentary properties. Appl Surf Sci 254:2809–2819

    Article  CAS  Google Scholar 

  38. Gao Y, Song Y, Zheng Q (2012) Miniemulsion polymerized titania/polystyrene core–shell nanocomposite particles based on nanotitania powder: morphology, composition and suspension rheology. Colloids Surf A 411:40–49

    Article  CAS  Google Scholar 

  39. Zhang Y, Zuo M, Liu T, Song Y, Zheng Q (2016) Segmental dynamics and rheology of miscible poly(vinylidene fluoride)/poly(methyl methacrylate) (70/30 by weight) blend filled with titania or poly(methyl methacrylate)-grafted titania. Compos Sci Technol 123:39–48

    Article  CAS  Google Scholar 

  40. You B, Zhou D, Yang F, Ren X (2011) Synthesis and characterization of core–shell polyacrylate particles containing hindered amine light stabilizers. Colloids Surf A 392:365–370

    Article  CAS  Google Scholar 

  41. Namazi H, Ahmadi H (2011) Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanocomposite membranes with TiO2 and SiO2 nanoparticles chemically modified surfaces. J Power Sources 196:2573–2583

    Article  CAS  Google Scholar 

  42. Lin HC, Li CC, Lee JT (2011) Nitroxide polymer brushes grafted onto silica nanoparticles as cathodes for organic radical batteries. J Power Sources 196:8098–8103

    Article  CAS  Google Scholar 

  43. Chen M, Zhou S, You B, Wu L (2005) A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres. Macromolecules 38:6411–6417

    Article  CAS  Google Scholar 

  44. Chen M, Wu L, Zhou S, You B (2004) Synthesis of raspberry-like PMMA/SiO2nanocomposite particles via a surfactant-free method. Macromolecules 37:9613–9619

    Article  CAS  Google Scholar 

  45. Zou J, Zhao Y, Yang M, Dan Y (2008) Preparation and characterization of poly(MMA-M12-BPMA)/TiO2 composite particles. Colloid Polym Sci 286:1009–1018

    Article  CAS  Google Scholar 

  46. Penzel E, Rieger J, Schneider HA (1997) The glass transition temperature of random copolymers: 1. Experimental data and the Gordon–Taylor equation. Polymer 38:325–337

    Article  CAS  Google Scholar 

  47. Steiert N, Landfester K (2007) Encapsulation of organic pigment particles via miniemulsion polymerization. Macromol Mater Eng 292:1111–1125

    Article  CAS  Google Scholar 

  48. López-Martínez EI, Márquez-Lucero A, Hernández-Escobar CA, Flores-Gallardo SG, Ibarra-Gómez R, Yacamán MJ, Zaragoza-Contreras EA (2007) Incorporation of silver/carbon nanoparticles into poly(methyl methacrylate) via in situ miniemulsion polymerization and its influence on the glass-transition temperature. J Polym Sci Pol Phys 45:511–518

    Article  Google Scholar 

  49. Zhang SW, Zhou SX, Weng YM, Wu LM (2005) Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization. Langmuir 21:2124–2128

    Article  CAS  Google Scholar 

  50. Li QL, Wang L, Qiu XL, Sun YL, Wang PX, Liu Y, Li F, Qi AD, Gao H, Yang YW (2014) Stimuli-responsive biocompatible nanovalves based on β-cyclodextrin modified poly(glycidyl methacrylate). Polym Chem 5:3389–3395

    Article  CAS  Google Scholar 

  51. Tan LL, Li H, Zhou Y, Zhang Y, Feng X, Wang B, Yang YW (2015) Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates. Small 11:3807–3813

    Article  CAS  Google Scholar 

  52. Siddiquey IA, Ukaji E, Furusawa T, Sato M, Suzuki N (2007) The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2. Mater Chem Phys 105:162–168

    Article  CAS  Google Scholar 

  53. Wang S, Wang T, Chen W, Hori T (2008) Phase-selectivity photocatalysis: a new approach in organic pollutants’ photodecomposition by nanovoidcore(TiO2)/shell(SiO2) nanoparticles. Chem Commun. doi:10.1039/B802127A

    Google Scholar 

  54. Ikeda S, Ikoma Y, Kobayashi H, Harada T, Torimoto T, Ohtani B, Matsumura M (2007) Encapsulation of titanium (IV) oxide particles in hollow silica for size-selective photocatalytic reactions. Chem Commun. doi:10.1039/B704468B

    Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support of this Project by the Natural Science Foundation of Hebei Province (B2017202028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, G. TiO2–SiO2 composite nanoparticles containing hindered amine light stabilizers encapsulated by MMA–PMPM copolymers. Iran Polym J 26, 785–795 (2017). https://doi.org/10.1007/s13726-017-0564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0564-7

Keywords

Navigation