Skip to main content
Log in

Microcapsules application in graphic arts industry: a review on the state-of-the-art

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The process of oil-containing microcapsules production by complex coacervation of gelatine and gum arabic was patented in 1957. Microencapsulation technology gained importance in production of carbonless copy paper as one of the most important commercial products. Development of this technology in later years led to the emergence of different types of microcapsules and the production procedures for various application fields. Nowadays, they are mainly used in medicine, pharmacy, agriculture, construction industry, chemical industry, food industry, biotechnology, cosmetic industry, photography, electronics, textiles and printing industry. This review paper highlights the major types of microcapsules and their applications in production techniques in graphic arts and printing industry, various processing parameters that affect their important characteristics and methods for microcapsules characterization. This paper discusses the applications of microcapsules within printing industry, and feasible printing technologies related to the desired substrate materials. The analysis of these subjects offers a deeper insight into the mechanisms of microcapsule transfer processes, their behavior, and working conditions leading to the final products. It reveals the advantages and the drawbacks of certain printing technologies for microcapsules transfer, which enables the determination of favorable transfer procedure for specific microcapsule type and substrate materials. This paper also provides valuable recommendations and potential solutions on how to overcome the obstacles created by certain printing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gosh SK (2006) Functional coatings and microencapsulation. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Dubey R, Shami TC, Bhasker Rao KU (2009) Microencapsulation technology and applications. Def Sci J 59:82–95

    CAS  Google Scholar 

  3. McShane M, Ritter D (2010) Microcapsules as optical biosensors. J Mater Chem 20:8189

    Article  CAS  Google Scholar 

  4. Stankovič Elesini U, Urbas R (2016) In: Izdebska J, Thomas S (eds) Printing on polymers, 1st edn, ISBN: 978-0-323-37468-2. Elsevier, Oxford. http://store.elsevier.com/Printing-on-Polymers/Joanna-Izdebska/isbn-9780323374682/

  5. Microtek Laboratories Inc. (2015) Technical overview: microencapsulation. http://www.microteklabs.com/technical-overview.html

  6. Baker J (2013) Innovation awards: driving innovation from maturity. https://www.icis.com/resources/news/2013/10/18/9716329/innovation-awards-driving-innovation-from-maturity/

  7. Market Research Store (2016) Global microencapsulation market set for rapid growth, To Reach Around USD 9.25 Billion by 2020. http://www.marketresearchstore.com/news/global-microencapsulation-market-165

  8. Savolainen A, Zhang Y, Rochefort D, Holopainen U, Erho T, Virtanen J, Smolander M (2011) Printing of polymer microcapsules for enzyme immobilization on paper substrate. Biomacromol 12:2008–2015

    Article  CAS  Google Scholar 

  9. Rodrigues SN, Martins IM, Fernandes IP, Gomes PB, Mata VG, Barreiro MF, Rodrigues AE (2009) Scentfashion®: microencapsulated perfumes for textile application. Chem Eng J149:463–472

    Article  Google Scholar 

  10. Nelson G (2008) Microencapsulation in textile finishing. Color Technol 31:57–64

    Article  Google Scholar 

  11. Starešinič M, Šumiga B, Boh B (2011) Microencapsulation for textile applications and use of SEM image analysis for visualisation of microcapsules. Tekstilec 54:80–103

    Google Scholar 

  12. Ocepek B, Boh B, Šumiga B, Tavčer PF (2011) Printing of antimicrobial microcapsules on textiles. Color Technol 128:95–102

    Article  Google Scholar 

  13. Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62

    Article  CAS  Google Scholar 

  14. Böhmer MR, Schroeders R, Steenbakkers JAM, de Winter SHPM, Duineveld PA, Lub J, Nijssen WPM, Pikkemaat JA, Stapert HR (2006) Preparation of monodisperse polymer particles and capsules by ink-jet printing. Colloid Surf A 289:96–104

    Article  Google Scholar 

  15. Blanco-Pascual N, Koldeweij RBJ, Stevens RSA, Montero MP, Gómez-Guillén MC, Ten Cate AT (2014) Peptide microencapsulation by core–shell printing technology for edible film application. Food Bioproc Technol 7:2472–2483

    Article  CAS  Google Scholar 

  16. Ramazani F, Chen W, van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ (2016) Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-the-art and challenges. Int J Pharm 499:358–367

    Article  CAS  Google Scholar 

  17. Maekawa Y, Miyano S, Yazawa K, Kondo A (1975) Aqueous printing ink containing perfume-containing microcapsules. https://www.google.com/patents/US3888689

  18. Jayashree K, Satya Priya A, Sugumar S, Arul Vanishwari M, Vishnuvarthanan MNR (2013) Encapsulated fragrance in overprint coatings. J Appl Sci Res 9:141–148

    CAS  Google Scholar 

  19. Pavlović Ž, Dedijer S, Elesini US, Urbas R (2014) Structure of microcapsules and its use in the industry—overview. In: Proceedings of the 7th GRID symposium, Novi Sad, Serbia, pp 65–70

  20. Kipphan H (2001) Handbook of print media. Springer, New York

    Book  Google Scholar 

  21. Kulčar R, Klanjšek Gunde M, Friškovec M (2010) Thermochromic inks—dynamic colour possibilities. http://www.create.uwe.ac.uk/create_gjovik_proceedings.pdf

  22. Shigeri Y, Koishi M, Kondo T, Shiba M, Tomioka S (1970) Studies on microcapsules. VI Effect of variations in polymerization condition on microcapsule size. Can J Chem 48:2047–2051

    Article  Google Scholar 

  23. Martins I, Rodrigues S, Barreiro F, Rodrigues AE (2011) PLA-based thyme oil microcapsules production: evaluation of surfactants. Indust Eng Chem Res 50:898–904

    Article  CAS  Google Scholar 

  24. Bachtsi AR, Boutris CJ, Kiparissides C (1996) Production of oil-containing crosslinked poly(vinyl alcohol) microcapsules by phase separation: effect of process parameters on the capsule size distribution. J Appl Polym Sci 60:9–20

    Article  CAS  Google Scholar 

  25. Leimann FV, Gonçalves OH, Machado RAF, Bolzan A (2009) Antimicrobial activity of microencapsulated lemongrass essential oil and the effect of experimental parameters on microcapsules size and morphology. Mater Sci Eng C29:430–436

    Article  Google Scholar 

  26. Joseph I, Venkataram S (1995) Indomethacin sustained release from alginate-gelatin or pectin-gelatin coacervates. Int J Pharm 126:161–168

    Article  CAS  Google Scholar 

  27. Erkan G, Sarıışık M (2015) Antifungal microcapsules of ethyl cellulose by solvent evaporation and their application to cotton fabric. Fib Text Eastern Eur 6:125–130

    Article  Google Scholar 

  28. Dohnal J, Štěpánek F (2010) Inkjet fabrication and characterization of calcium alginate microcapsules. Powder Technol 200:254–259

    Article  CAS  Google Scholar 

  29. Stankovič Elesini U, Leskovšek M, Bernik S, Šumiga B, Urbas R (2016) Influence of co-current spray drying conditions on agglomeration of melamine-formaldehyde microcapsules. Dry Technol 34:1510–1520

    Article  Google Scholar 

  30. Valianatos PJ, Chebiyam R, Manning JJ, Steiner ML, Whitesides TH, Walls MD (2006) Preparation of capsules. https://www.google.com/patents/WO2005072228A3?cl=pt-pt

  31. Rodrigues SN, Martins I, Mata VG, Barreiro F, Fernandes I, Rodrigues AE (2008) Microencapsulation of limonene for textile application. Indust Eng Chem Res 47:4142–4147

    Article  CAS  Google Scholar 

  32. Boh B, Sajovic I, Voda K (2003) Microcapsule applications: patent and literature analysis. In: Arshady R, Boh B (eds) Microcapsule patents and products. The MML series, Vol. 6, Citus reference series, London, pp 85–156

  33. Boh B (2007) Developpements et applications industrielles des microcapsules. V: Van Damme, T.F. (ur.): Microencapsulation: des sciences aux technologies. Paris, Lavoisier, pp 9–22

  34. Poncelet D, Boh B (2008) Microcapsules deliver. Chem Indust 2:23–25

    Google Scholar 

  35. Bumblebee Laboratories (2007) Pre-scale film working principle. http://www.bumblebee.com.sg/psWebpages/s_film.php?dis=0.0.8.2&ex=1

  36. Sensor Products Inc. (2015) Tactile pressure indicating sensor film. https://www.sensorprod.com/prescale/product-pages/prescale/prescale.pdf

  37. Shukla PG (n.d.) Microcapsules and microspheres. http://www.venturecenter.co.in/techrx/pdfs/TechShowcase_Microsphere.pdf

  38. Microtek Laboratories Inc. (2015) Fragrances and essential oils. http://www.microteklabs.com/fragrances.html

  39. Seeboth A, Lötzsch D (2008) Thermochromic phenomena in polymers. Smithers Rapra, Shrewsbury

    Google Scholar 

  40. Phillips GK (2000) Combining thermochromic and conventional inks to deter document fraud. In: Proceedings of SPIE 2000. Optical Security and Counterfeit Deterrence Techniques III, San Jose, CA, 3973:99–104

  41. Johansson L (2006) Creation of printed dynamic images. PhD Thesis, Linköping University, Sweden, ISSN 0280-7971

  42. Way TP, Barner KE (1997) Automatic visual to tactile translation—part I: human factors, access methods, and image manipulation. IEEE Trans Rehabil Eng 5:81–94

    Article  CAS  Google Scholar 

  43. Akzonobel (2015) Expancel in paper and board. https://www.akzonobel.com/expancel/applications/paper_and_board/

  44. Kron A, Nordin O, Nilsson S, Berglund C (2004) Microspheres. https://www.google.com/patents/WO2004072160A1?cl=ja

  45. Fonseca L, Meesters G (2013) Enzyme encapsulation. Bioencapsulation Innovations. http://bioencapsulation.net/220_newsletter/BI_2013_12/Bioencap_innov_December_2013.pdf

  46. Nejman A, Cieślak M, Gajdzicki B, Goetzendorf-Grabowska B, Karaszewska A (2014) Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochim Acta 589:158–163

    Article  CAS  Google Scholar 

  47. Pavić N (2015) Possibility of microcapsule application in screen and offset printing techniques. Master Thesis, University of Novi Sad, Serbia

  48. Rose H (2007) Scent encapsulated in printed products. New Technologies and Economic Developments. https://projekt.beuth-hochschule.de/fileadmin/projekt/sprachen/sprachenpreis/erfolgreiche_beitraege_2007/1._Preis_07_-_Scent_Encapsulated_in_Printed_Products_-_Heike__Rose.pdf

  49. Costa R, Moggrifge GD, Saraiva PM (2006) Chemical product engineering: an emerging paradigm within chemical engineering. AIChE J 52:1976

    Article  CAS  Google Scholar 

  50. Ternat C, Ouali L, Sommer H, Fieber W, Velazco M, Plummer C, Kreutzer G, Klok H, Manson J, Herrmann A (2008) Investigation of the release of bioactive volatiles from amphiphilic multiarm star-block copolymers by thermogravimetry and dynamic headspace analysis. Macromolecules 41:7079–7089

    Article  CAS  Google Scholar 

  51. Herrmann A, Debonneville C, Laubscher V, Aymard L (2000) Dynamic headspace analysis of the light-induced controlled release of perfumery aldehydes and ketones from keto esters in bodycare and household applications. Flav Fragr J 15:415–420

    Article  CAS  Google Scholar 

  52. Jacquemond M, Jackelmann N, Ouali L, Haefliger O (2009) Perfume-containing polyurea microcapsules with undetectable levels of free isocyanates. J Appl Polym Sci 114:3074–3080

    Article  CAS  Google Scholar 

  53. Rogers DE, Lutz EB (2006) Scented packaging and products. https://www.google.ch/patents/US20060246265

  54. Martín Á, Varona S, Navarrete A, Cocero MJ (2010) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. Open Chem Eng J 4:31–41

    Article  Google Scholar 

  55. Kulčar R, Friškovec M, Hauptman N, Vesel A, Klanjšek Gunde A (2010) Colorimetric properties of reversible thermochromic printing inks. Dyes Pigment 86:271–277

    Article  Google Scholar 

  56. Stankovič Elesini U, Šumiga B, Manojlovič S, Urbas R (2014) Raised printing with screen printing technique. In: Proceedings of 7th symposium information and graphic arts technology, Ljubljana, Slovenia, pp 187–192

  57. Urbas R, Manojlović S, Šumiga B, Stankovič Elesini U (2017) Influence of microcapsules on the properties of raised prints. Cellul Chem Technol 51:319–331

    Google Scholar 

  58. Tetsuya W, Susumu O (2004) A study of legible braille patterns on capsule paper: diameters of braille dots and their interspaces on original ink-printed paper. https://www.nise.go.jp/kenshuka/josa/kankobutsu/pub_a/nise_a-8/nise_a-8_1.pdf

  59. Stankovič Elesini U, Magajna L, Fele N, Urbas R (2016) Identifying character of essential oils by the response time measuring. Proc 16th World Textile Conf AUTEX 2016, Ljubljana, Slovenia, p 7

  60. Goetzendorf-Grabowska B, Królikowska H, Gadzinowski M (2004) Polymer microspheres as carriers of antibacterial properties of textiles: a preliminary study. Fibres Text East Eur 12:62–64

    CAS  Google Scholar 

  61. Goetzendorf-Grabowska B, Królikowska H, Bąk P, Gadzinovski M, Brycki B, Szwajca A (2008) Triclosan encapsulated in poly(L, L-lactide) as a carrier of antibacterial properties of textiles. Fibres Text East Eur 16:102–107

    CAS  Google Scholar 

  62. Pušić T, Dekanić T, Bischof S, Soljačić I (2015) Textiles functionalization with microcapsules—fastness to washing. http://www.ttf.unizg.hr/advancetex/PDF/Conferences/1_Full_paper_Pusic_Dekanic_Bischof_Soljacic_IDC_2015.pdf

  63. Tarnopol PB (2011) Scenting process. http://www.google.com.gt/patents/WO2011002997A1?cl=en

  64. Le HP (1998) Progress and trends in ink-jet printing technology. Part 1. J Imag Sci Technol http://docview1.tlvnimg.com/tailieu/2010/20100314/bincancook/progress_and_trends_in_inkjet_3627.pdf

  65. Foxjet (n.d.) Industrial inkjet equipment for all your marking and coding needs. http://www.rvevans.com/Packaging-Solutions/PDF/VxJetSeriesValvePrintingSystems.pdf

  66. Chovancova V, Pekarovicova A, Fleming III P (2005) Production of 3D structures in printing. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.3502&rep=rep1&type=pdf

  67. Ertel JP (1999) Encapsulated liquid toner printing apparatus. https://www.google.ch/patents/US5923412

  68. Ocepek B, Forte-Tavčer P, Boh B, Šumiga B (2009) Proceedings of 9th Autex Conf., Izmir, Turkey, p 334

  69. Milošević R, Kašiković N, Pavlović Ž, Stankovič Elesini U, Urbas R(2016) The possibility of microcapsules application using pad printing technology. In: Proceedings of 8th GRID Symposium, Novi Sad, Serbia, 47–55

  70. Palmer D (2002) Inkjet ink microcapsules having colored shells. https://www.google.ch/patents/US20020128348

  71. Urbas R, Pavlović Ž, Draganov S, Stankovič Elesini U (2014) Offset printing by the microcapsules—influence on the properties of paper substrate. Proc 7th GRID Symp, Novi Sad, Serbia, 51–58

  72. Pavić N, Pavlović Ž, Urbas R (2015) Possibility of microcapsule application in screen and offset printing techniques. In: Faculty of technical sciences proceedings. http://www.ftn.uns.ac.rs/n2012360403/broj-04

  73. Kissinger-Kane MC (2007) Investigation and characterization of the dispersion of nanoparticles in a polymer matrix by scattering techniques. PhD Thesis, University of Florida, USA

  74. Bensadoun F, Kchit N, Billotte C, Trochu F, Ruiz E (2011) A comparative study of dispersion techniques for nanocomposite made with nanoclays and an unsaturated polyester resin. J Nanomater 2011:1–12

    Article  Google Scholar 

  75. Stankovič Elesini U, Švarc J, Šumiga B, Urbas R (2016) Melamine formaldehyde microcapsules with fragranced core material: preparation, properties, and end use. Text Res J

  76. Liu R, Ma GH, Wan YH, Su ZG (2005) Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method. Colloid Surf B 45:144–153

    Article  CAS  Google Scholar 

  77. Milošević R, Urbas R, Kašiković N, Cigula T, Stankovič Elesini U (2017) The characterization of microcapsules printed by screen printing and coating technology. J Graph Eng Des (in press)

  78. Peña B, Casals M, Torras C, Gumí T, Garcia-Valls R (2009) Vanillin release from polysulfone macrocapsules. Indust Eng ChemRes 48:1562–1565

    Google Scholar 

  79. Mozaffari SM, Beheshty MH, Mirabedini SM (2016) Microencapsulation of 1-methylimidazole using solid epoxy resin: study on microcapsule residence time and properties of the system. Iran Polym J 25:385–394

    Article  CAS  Google Scholar 

  80. Kukovic M, Knez M (1996) Process for preparing carriers saturated or coated with microencapsulated scents. https://www.google.com/patents/WO1996009114A1?cl=en

  81. Tessa ten Cate A, Gaspar CH, Virtanen HLK, Stevens RSA, Koldeweij RBJ, Olkkonen JT, Rentrop CHA, Smolander MH (2014) Printed electronic switch on flexible substrates using printed microcapsules. J Mater Sci 49:5831–5837

    Article  Google Scholar 

  82. Martins IM, Barreiro MF, Coelho M, Rodrigues AE (2014) Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic application. Chem Eng J245:191–200

    Article  Google Scholar 

  83. Boh B, Šumiga B (2008) Microencapsulation technology and its applications in building construction materials. Mater Geoenviron 55:329–344

    CAS  Google Scholar 

  84. Stankovič Elesini U, Švarc J, Šumiga B, Urbas R (2016) Development of scented bow-tie: user experience. Tekstilec 59:206–215

    Article  Google Scholar 

  85. Bône S, Vautrin C, Barbesant V, Truchon S, Harrison I, Geffroy C (2011) Microencapsulated fragrances in melamine formaldehyde resins. Chimia 65:177–181

    Article  Google Scholar 

  86. Šumiga B (2013) Informational approaches in the design of chemical microencapsulation processes. PhD Thesis, University of Ljubljana, Slovenia

  87. Hwang JS, Kim JN, Wee YJ, Yun JS, Jang HG, Kim SH, Ryu HW (2006) Preparation and characterization of melamine-formaldehyde resin microcapsules containing fragrant oil. BiotechnolBioproc Eng 11:332–336

    CAS  Google Scholar 

  88. Teixeira M, Rodriguez O, Rodrigues SN, Martins I, Rodrigues AE (2012) A case study of product engineering: performance of microencapsulated perfumes on textile applications. AIChE J 58:1939–1950

    Article  CAS  Google Scholar 

  89. Jalsenjak I, Nicolaidou CT, Nixon JR (1976) The in vitro dissolution of phenobarbitone sodium from ethyl cellulose microcapsules. J Pharm Pharm 28:912–914

    Article  CAS  Google Scholar 

  90. Ohtsubo T, Tsuda S, Tsuji K (1989) Formulation factors of fenvalerate microcapsules influencing insecticidal efficacy and fish toxicity. J Pestic Sci 14:235–239

    Article  CAS  Google Scholar 

  91. Prapaitrakul W, Whitworth CW (1990) Effect of excipients and pressure on physical properties. Drug Dev Indust Pharm 16:1427–1434

    Article  CAS  Google Scholar 

  92. Liu KK (1995) The deformation of cellular entities. PhD Thesis, University of London, UK

  93. Sun G, Zhang Z (2002) Mechanical strength of microcapsules made of different wall materials. Int J Pharm 242:307–311

    Article  CAS  Google Scholar 

  94. Zhang Z, Saunders R, Thomas CR (1999) Mechanical strength of single microcapsules determined by a novel micromanipulation technique. J Microencapsul 16:117–124

    Article  CAS  Google Scholar 

  95. Zhang Z, Ferenczi MA, Lush AC, Thomas CR (1991) A novel micromanipulation technique for measuring the bursting strength of single mammalian cells. Appl Microbiol Biotechnol 36:208–210

    Article  CAS  Google Scholar 

  96. Zhang Z, Saunders R, Thomas CR (1994) Micromanipulation measurements of the bursting strength of single microcapsules. I Chem Eng Res Event 2:722–724

    CAS  Google Scholar 

  97. Fery A, Dubreuil F, Möhwald H (2004) Mechanics of artificial microcapsules. New J Phys 6:1–13

    Article  Google Scholar 

  98. Chen B, Hashimoto T, Vergeer F, Burgess A, Thompson G, Robinson I (2014) Three-dimensional analysis of the spatial distribution of iron oxide particles in a decorative coating by electron microscopic imaging. Prog Org Coat 77:1069–1072

    Article  CAS  Google Scholar 

  99. Chen B, Guizar-Sicairos M, Xiong G, Shemilt L, Diaz A, Nutter J, Burdet N, Huo S, Mancuso J, Monteith A, Vergeer F, Burgess A, Robinson I (2013) Three-dimensional structure analysis and percolation properties of a barrier marine coating. Sci Rep 3:1–5

    Google Scholar 

  100. Kolesnikova TA, Akchurin GG, Portnov SA, Khomutov GB, Akchurin GG, Naumova OG, Sukhorukov GB, Gorin DA (2012) Visualization of magnetic microcapsules in liquid by optical coherent tomography and control of their arrangement via external magnetic field. Laser Phys Lett 9:643–648

    Article  CAS  Google Scholar 

  101. Chen Y, Liang C, Liu Y, Fischer AH, Parwani AV, Pantanowitz L (2012) Review of advanced imaging techniques. J Pathol Inform 3:22

    Article  Google Scholar 

  102. Altantzis T, Goris B, Sánchez-Iglesias A, Grzelczak M, Liz-Marzán L, Bals S (2012) Quantitative structure determination of large three-dimensional nanoparticle assemblies. Part Part Syst Charact 30:84–88

    Article  Google Scholar 

  103. Manojlović S (2013) Bonding microcapsules to different types of substrates. https://www.academia.edu/11054220/BONDING_MICROCAPSULES_TO_DIFFERENT_TYPES_OF_SUBSTRATES

  104. Urbas R, Stankovič Elesini U (2015) Color differences and perceptive properties of prints made with microcapsules. J Graph Eng Des 6:15–21

    Google Scholar 

  105. Vaidya U, Meier G, Knipp R (2007) Printing inks with property enhancing microcapsules. https://www.google.com/patents/US20070244219

  106. Morishita R, Saito M, Tsuchida K, Harada T (1993) Studies on micro-climate within clothing and the equipment for its evaluation. Research Institute TOYOBO Co., Osaka

    Google Scholar 

  107. Mecheels J (1992) Anforderungsprofile für Funktionsgerechte Bekleidung. DWI -Schriftenreihe des Deutschen Wollforschungsinstitutes an der TH Aachen, Aachener Teksiltagung 109:263–268

    Google Scholar 

  108. Stančić M (2015) Model of thermal properties of printed garment. PhD Thesis, University of Novi Sad, Serbia http://www.grid.uns.ac.rs/data/biblioteka/disertacije/stancic_disertacija.pdf

  109. Stančić M, Grujić D, Kašiković N, Novaković D, Ružičić B, Milošević R (2015) Influence of the washing process and the perspiration effects on the qualities of printed textile substrates. Tekstilec 58:135–142

    Article  Google Scholar 

  110. Stančić M, Grujić D, Novaković D, Kašiković N, Ružičić B, Geršak J (2014) Dependence of warm or cold feeling and heat retention ability of knitwear from digital print parameters. J Graph Eng Des 5:25–32

    Google Scholar 

  111. Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28:1536–1550

    Article  CAS  Google Scholar 

  112. Oliveira FR, Fernandes M, Carneiro N, Souto AP (2012) Functionalization of wool fabric with phase-change materials microcapsules after plasma surface modification. J Appl Polym Sci 128:2638–2647

    Article  Google Scholar 

  113. Thilagavathi G, Kannaian T (2010) Combined antimicrobial and aroma finishing treatment for cotton, using micro encapsulated geranium (Pelargonium graveolens L’ Herit. Ex Ait.) leaves extract. Indian J Nat Product Resour 1:348–352

    Google Scholar 

  114. Azizi N, Ladhari N, Majdoub M (2011) Elaboration and characterization of polyurethane-based microcapsules: application in textile. Asian J Text 1:130–137

    Article  Google Scholar 

  115. Silva M, Martins IM, Barreiro MF, Dias MM, Rodrigues AE (2017) Functionalized textiles with PUU/limonene microcapsules: effect of finishing methods on fragrance release. J Text Inst 108:361–367

    Article  CAS  Google Scholar 

  116. Sánchez P, Sánchez-Fernandez MV, Romero A, Rodrıguez JF, Sánchez-Silva L (2010) Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta 498:16–21

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Serbian Ministry of Science and Technological Development, Grant No: 35027 “The development of software model for improvement of knowledge and production in the graphic arts industry”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rastko Milošević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbas, R., Milošević, R., Kašiković, N. et al. Microcapsules application in graphic arts industry: a review on the state-of-the-art. Iran Polym J 26, 541–561 (2017). https://doi.org/10.1007/s13726-017-0541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0541-1

Keywords

Navigation