Skip to main content
Log in

Synthesis and characterization of exfoliated polystyrene grafted hexagonal boron nitride nanosheets and their potential application in heat transfer nanofluids

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Three different methods were used to develop surface-modified hexagonal boron nitride (h-BN) nanosheets, and polystyrene grafting was performed by an indirect covalent bond formation between modified h-BN nanosheets and styrene molecules through surface initiated atom transfer radical polymerization (SI-ATRP) approach. In all methods, an alkyl bromide as the ATRP-initiating site was first introduced on h-BN nanosheets and an SI-ATRP reaction of styrene from the initiator immobilized h-BN surface was achieved. The structure of synthesized PS grafted h-BN nanosheets (PS-g-h-BN) was identified and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy methods. The functionalization promoted the exfoliation of h-BN layered structure into few layer sheets where the thickness of the sheets was dependent on the modification technique and the content of polymer grafted on nanosheets. The highest grafting content of PS-g-h-BN nanosheets was obtained around 20% which could enhance thermal conductivity of mineral oil-based nanofluids with the minimum concentration of the nanofiller (0.01 wt%). The electrical and physical properties of the nanofluid were also investigated. According to the results, the dielectric loss reduced by increase in nanofiller concentration was an indication of the enhanced dielectric nature of nanofluid. In addition, exfoliated PS-g-h-BN nanosheets dispersions were shown to be stable in mineral oil up to 2 months and this stability was linked to the presence of polymer chains followed by the formation of van der Walls interactions between the grafted polymer and the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saidura R, Leongb KY, Mohammadc HA (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15:1646–1668

    Article  Google Scholar 

  2. Devendiran DK, Amirtham VA (2016) A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev 60:21–40

    Article  CAS  Google Scholar 

  3. Lin C, Rao Z (2017) Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: a molecular dynamics study. Appl Therm Eng 110:1411–1419

    Article  CAS  Google Scholar 

  4. Uddin Siddiqui G, Rehman MM, Yang YJ, Choi KH (2017) A two-dimensional hexagonal boron nitride/polymer nanocomposite for flexible resistive switching devices. J Mater Chem C 5:862–871

    Article  CAS  Google Scholar 

  5. İlhan B, Kurt M, Ertürk H (2016) Experimental investigation of heat transfer enhancement and viscosity change of h-BN nanofluids. Exp Therm Fluid Sci 77:272–283

    Article  Google Scholar 

  6. Krishnam M, Bose S, Das C (2016) Boron nitride (BN) nanofluids as cooling agent in thermal management system (TMS). Appl Therm Eng 106:951–958

    Article  CAS  Google Scholar 

  7. Nag A, Raidongia K, Hembram KP, Datta R, Waghmare UV, Rao CNR (2010) Graphene analogues of BN: novel synthesis and properties. ACS Nano 4:1539–1544

    Article  CAS  Google Scholar 

  8. Song L, Liu Z, Mohana Reddy AL, Tharangattu N, Taha-Tijerina J, Peng J, Gao G, Lou J, Vajtai R, Ajayan PM (2012) Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv Mater 24:4878–4895

    Article  CAS  Google Scholar 

  9. Pakdel A, Bando Y, Golberg D (2014) Nano boron nitride flatland. Chem Soc Rev 43:934–959

    Article  CAS  Google Scholar 

  10. Bhimanapati GR, Glavin NR, Robinson JA (2016) Chapter Three – 2D boron nitride: synthesis and applications. Semiconduct Semimet 95:101–147

    Article  Google Scholar 

  11. Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54:4051–4068

    Article  CAS  Google Scholar 

  12. Karthikeyan N, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109:50–55

    Article  CAS  Google Scholar 

  13. Li Y, Zhou J, Luo Z, Tung S, Schneider E, Wu J, Li X (2011) Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids. Nanoscale Res Lett 6:443–449

    Article  Google Scholar 

  14. Weng Q, Wang X, Wang X, Bando Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012

    Article  CAS  Google Scholar 

  15. Deepika Li LH, Glushenkov AM, Hait SK, Hodgson P, Chen Y (2014) High-efficient production of boron nitride nanosheets via an optimized ball milling for lubrication in oil. Sci Rep 4:7288

    Article  CAS  Google Scholar 

  16. Li LH, Chen Y, Behan G, Zhang H, Petravic M, Glushenkov AM (2011) Large-scale mechanical peeling of boron nitride nanosheets by low energy ball milling. J Mater Chem 21:11862–11866

    Article  CAS  Google Scholar 

  17. Lin Y, Williams TV, Xu TB, Cao W, Elsayed-Ali HE, Connell JW (2011) Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J Phys Chem C 115:2679–2685

    Article  CAS  Google Scholar 

  18. Zhu J, Kang J, Kang J, Jariwala D, Wood J, Seo J, Chen K, Marks T, Hersam M (2015) Solution-processed dielectrics based on thickness-sorted two-D hexagonal boron nitride nanosheets. Nano Lett 15:7029–7036

    Article  Google Scholar 

  19. Lin Y, Williams TV, Cao W, Elsayed-Ali HE, Connell JW (2010) Defect functionalization of hexagonal boron nitride nanosheets. J Phys Chem C 114:17434–17439

    Article  CAS  Google Scholar 

  20. Sainsbury T, Satti A, May P, Wang Z, McGovern I, Gun’ko Y, Coleman J (2012) Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc 134:18758–18771

    Article  CAS  Google Scholar 

  21. Seyhana AT, Göncüa Y, Durukana O, Akaya A, Ay N (2017) Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites. J Solid State Chem 249:98–107

    Article  Google Scholar 

  22. Bhimanapatia GR, Kozucha D, Robinson JA (2014) Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale 6:11671–11675

    Article  Google Scholar 

  23. Xie H, Chen L (2011) Review on the preparation and thermal performances of carbon nanotube contained nanofluids. J Chem Eng Data 56:1030–1041

    Article  CAS  Google Scholar 

  24. Lei W, Mochalin V, Liu D, Qin S, Gogotsi Y, Chen Y (2015) Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat Commun 6:8849–8856

    Article  CAS  Google Scholar 

  25. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283

    Article  Google Scholar 

  26. Cui Z, Martinez A, Adamson D (2015) PMMA functionalized boron nitride sheets as nanofillers. Nanoscale 7:10193–10197

    Article  CAS  Google Scholar 

  27. Nazarov AS, Demin VN, Grayfer ED, Bulavchenko AI, Arymbaeva AT, Shin H, Choi J, Fedorov VE (2012) Functionalization and dispersion of hexagonal boron nitride (h-BN) nanosheets treated with inorganic reagents. Chem Asian J 7:554–560

    Article  CAS  Google Scholar 

  28. Lin Y, Connell JW (2011) Method for exfoliation of hexagonal boron nitride. Pub. No.: US 201110045223 Al

  29. Ejaz M, Rai S, Wang K, Zhang K, Zhoub W, Grayson S (2014) Surface-initiated atom transfer radical polymerization of glycidyl methacrylate and styrene from boron nitride nanotubes. J Mater Chem C 2:4073–4079

    Article  CAS  Google Scholar 

  30. Hadasha W, Klumperman B (2014) Atom transfer radical polymerization as a powerful tool in the synthesis of molecular brushes. Polym Int 63:824–834

    Article  CAS  Google Scholar 

  31. Hui CM, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller MR, Matyjaszewski K (2014) Surface-initiated polymerization as enabling tool for multifunctional (nano) engineered hybrid materials. Chem Mater 26:745–762

    Article  CAS  Google Scholar 

  32. Pietrasik J, Bombalski L, Cusick B, Huang J, Pyun J, Kowalewski T, Matyjaszewski K (2005) Controlling polymer chain topology and architecture by ATRP from flat surfaces. In: Stimuli-responsive polymeric films and coatings, Chap 2. Am Chem Soc, pp 28-42

  33. Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039

    Article  CAS  Google Scholar 

  34. Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992

    Article  CAS  Google Scholar 

  35. Du M, Wu Y, Hao X (2013) A facile chemical exfoliation method to obtain large size boron nitride nanosheets. Cryst Eng Comm 15:1782–1786

    Article  CAS  Google Scholar 

  36. Socrates G (2004) Infrared and raman characteristic group frequencies: tables and charts. Wiley, New York

    Google Scholar 

  37. Seeliger F, Matyjaszewski K (2009) Temperature effect on activation rate constants in ATRP-new mechanistic insights into the activation process. Macromolecules 42:6050–6055

    Article  CAS  Google Scholar 

  38. Horn M, Matyjaszewski K (2013) Solvent effects on the activation rate constant in atom transfer radical polymerization. Macromolecules 46:3350–3357

    Article  CAS  Google Scholar 

  39. Tang W, Matyjaszewski K (2007) Effects of initiator structure on activation rate constants in ATRP. Macromolecules 40:1858–1863

    Article  CAS  Google Scholar 

  40. Lee DJ, Lee B, Park KH, Ryu HJ, Jeon SK, Hong SH (2015) Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett 15:1238–1244

    Article  CAS  Google Scholar 

  41. Alem N, Ramasse QM, Seabourne CR, Yazyev OV, Erickson K, Sarahan MC, Kisielowski C, Scott AJ, Louie SG, Zettl A (2012) Subangstrom edge relaxations probed by electron microscopy in hexagonal boron nitride. Phys Rev Lett 109:205502

    Article  Google Scholar 

  42. Lin S, Shih C, Sresht V, Rajan AG, Strano MS, Blankschtein D (2016) Understanding the colloidal dispersion stability of 1D and 2D materials: perspectives from molecular simulations and theoretical modeling. In Press, Adv Colloid Interf Sci

    Google Scholar 

  43. Prevost TA, Oommen TV (2006) Cellulose insulation in oil filled power transformers: part I-history and development. IEEE Electr Insul Mag 22:28–35

    Article  Google Scholar 

  44. Taha-Tijerina J, Narayanan TN, Gao G, Rohde M, Tsentalovich DA, Pasquali M, Ajayan PM (2012) Electrically insulating thermal nano-oils using 2D fillers. ACS Nano 6:1214–1220

    Article  CAS  Google Scholar 

  45. Żyła G, Fala J, Traciak J, Gizowska M, Perkowski K (2016) Huge thermal conductivity enhancement in boron nitride-ethylene glycol nanofluids. Mater Chem Phys 180:250–255

    Article  Google Scholar 

  46. Suganthi K, Parthasarathy M, Rajan K (2013) Liquid-layering induced, temperature-dependent thermal conductivity enhancement in ZnO–propylene glycol nanofluids. Chem Phys Lett 561–562:120–124

    Article  Google Scholar 

  47. Mishra PC, Mukherjee S, Nayak SK, Panda A (2014) A brief review on viscosity of nanofluids. Int Nano Lett 4:109–120

    Article  CAS  Google Scholar 

  48. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  49. Standal SH, Blokhus AM, Haavik J, Skauge A, Barth T (1999) Partition coefficients and interfacial activity for polar components in oil/water model systems. J Colloid Interface Sci 212:33–41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Imam Khomeini International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mohammad Alavi Nikje.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehirad, M., Nikje, M.M.A. Synthesis and characterization of exfoliated polystyrene grafted hexagonal boron nitride nanosheets and their potential application in heat transfer nanofluids. Iran Polym J 26, 467–480 (2017). https://doi.org/10.1007/s13726-017-0535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0535-z

Keywords

Navigation