Skip to main content

Advertisement

Log in

Enhanced dielectric constant of acrylonitrile–butadiene rubber/barium titanate composites with mechanical reinforcement by nanosilica

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Acrylonitrile–butadiene rubber (NBR), a synthetic rubber having C≡N dipoles, was chosen as a polymer matrix with a higher dielectric constant than other non-polar rubber like silicone rubber or ethylene–propylene–diene monomer. Barium titanate (BaTiO3), as a ferroelectric material, with a high dielectric constant and low dielectric loss was selected as a main filler to further enhance the dielectric constant of NBR. An effective silane coupling agent (KH845-4), selected from five types of silane coupling agents with different characteristic functional groups, was used to modify the surface of BaTiO3 particles to enhance its interfacial adhesion to the matrix. Fourier transform infrared spectroscopy (FTIR) was used to verify the successful modification. The addition of BaTiO3 obviously enhanced the dielectric constants. In particular, an uncommon pattern of dielectric loss has been displayed and analyzed in this paper. Nevertheless, the reinforcing effect of mechanical strength of the NBR/treated BaTiO3 composites is limited. On this basis, the addition of nanosilica (SiO2), replacing part of NBR, improved the mechanical strength. Confirmed by scanning electron microscopy (SEM), the SiO2 and treated BaTiO3 particles were dispersed well in the NBR matrix. The tensile strength was increased from 4.33 to 6.12 MPa when SiO2 accounted for 4%. Moreover, the curing characterizations, crosslinking density, resistivity, and oil resistance were evaluated. This composite material can be used in manufacturing electronic devices, which are subjected to oily environments for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parizi SS, Conley G, Costanzo T, Howell B, Mellinger A, Caruntu G (2015) Fabrication of barium titanate/acrylonitrile-butadiene styrene/poly(methyl methacrylate) nanocomposite films for hybrid ferroelectric capacitors. RSC Adv 5:76356–76362

    Article  CAS  Google Scholar 

  2. Abe K, Nagao D, Watanabe A, Konno M (2013) Fabrication of highly refractive barium-titanate-incorporated polyimide nanocomposite films with high permittivity and thermal stability. Polym Int 62:141–145

    Article  CAS  Google Scholar 

  3. Chen T, Qiu J, Zhu K, Li J (2016) Electro-mechanical performance of polyurethane dielectric elastomer flexible micro-actuator composite modified with titanium dioxide-graphene hybrid fillers. Mater Des 90:1069–1076

    CAS  Google Scholar 

  4. Bur AJ (1985) Dielectric-properties of polymers at microwave-frequencies: a review. Polymer 26:963–977

    Article  CAS  Google Scholar 

  5. Zhi X, Mao Y, Yu Z (2015) Gamma-aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss. Compos A: Appl S 76:194–202

    Article  CAS  Google Scholar 

  6. Luo H, Wu Z, Chen C, Ma C, Zhou K, Zhang D (2016) Methoxypolyethylene glycol functionalized carbon nanotube composites with high permittivity and low dielectric loss. Compos A: Appl S 86:57–65

    Article  CAS  Google Scholar 

  7. Jiang L, Betts A, Kennedy D, Jerrams S (2015) The fabrication of dielectric elastomers from silicone rubber and barium titanate: employing equi-biaxial pre-stretch to achieve large deformations. J Mater Sci 50:7930–7938

    Article  CAS  Google Scholar 

  8. Sheng J, Chen H, Li B, Wang Y (2013) Influence of the temperature and deformation-dependent dielectric constant on the stability of dielectric elastomers. J Appl Polym Sci 128:2402–2407

    Article  CAS  Google Scholar 

  9. Poh CL, Mariatti M, Noor AF, Sidek O, Chuah TP, Chow SC (2016) Dielectric properties of surface treated multi-walled carbon nanotube/epoxy thin film composites. Compos B Eng 85:50–58

    Article  CAS  Google Scholar 

  10. Wersing W (1996) Microwave ceramics for resonators and filters. Curr Opin Solid St M 1:715–731

    Article  CAS  Google Scholar 

  11. Cava RJ (2001) Dielectric materials for applications in microwave communications. J Mater Chem 11:54–62

    Article  CAS  Google Scholar 

  12. Sharma P, Kumar P, Kundu RS, Juneja JK, Ahlawat N, Punia R (2015) Structural and dielectric properties of substituted barium titanate ceramics for capacitor applications. Ceram Int 41:13425–13432

    Article  CAS  Google Scholar 

  13. Sharma S, Shamim K, Ranjan A, Rai R, Kumari P, Sinha S (2015) Impedance and modulus spectroscopy characterization of lead free barium titanate ferroelectric ceramics. Ceram Int 41:7713–7722

    Article  CAS  Google Scholar 

  14. Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou K (2015) Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl Mater Inter 7:8061–8069

    Article  CAS  Google Scholar 

  15. Salaeh S, Boiteux G, Cassagnau P, Nakason C (2015) Flexible ceramic-polymer composites of barium titanate and epoxidized natural rubber. Int J Appl Ceram Technol 12:106–115

    Article  CAS  Google Scholar 

  16. Asimakopoulos IA, Psarras GC, Zoumpoulakis L (2014) Barium titanate/polyester resin nanocomposites: development, structure-properties relationship and energy storage capability. Express Polym Lett 8:692–707

    Article  CAS  Google Scholar 

  17. Tomovska R, Daniloska V, Asua JM (2013) Surface modification of TiO2 nanoparticles via photocataliticaly induced reaction: influence of functionality of silane coupling agent. Appl Surf Sci 264:670–673

    Article  CAS  Google Scholar 

  18. Su J, Zhang J (2015) Remarkable enhancement of mechanical and dielectric properties of flexible ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3) dielectric elastomer by chemical modification of particles. RSC Adv 5:78448–78456

    Article  CAS  Google Scholar 

  19. Bele A, Stiubianu G, Varganici C, Ignat M, Cazacu M (2015) Silicone dielectric elastomers based on radical crosslinked high molecular weight polydimethylsiloxane co-filled with silica and barium titanate. J Mater Sci 50:6822–6832

    Article  CAS  Google Scholar 

  20. González N, Custal MA, Lalaouna S, Riba JR, Armelin E (2016) Improvement of dielectric properties of natural rubber by adding perovskite nanoparticles. Eur Polym J 75:210–222

    Article  Google Scholar 

  21. Ahmad HS, Ismail H, Azura AR (2015) Comparison properties of natural rubber/virgin acrylonitrile-butadiene rubber and natural rubber/recycled acrylonitrile-butadiene rubber blends. Iran Polym J 24:185–195

    Article  CAS  Google Scholar 

  22. Mirabedini AS, Karrabi M, Ghasemi I (2013) Viscoelastic behavior of NBR/phenolic compounds. Iran Polym J 22:25–32

    Article  CAS  Google Scholar 

  23. Jiang H, Ni Q, Wang H, Liu J (2012) Fabrication and characterization of NBR/MWCNT composites by latex technology. Polym Composite 33:1586–1592

    Article  CAS  Google Scholar 

  24. Ge X, Li MC, Cho UR (2015) Novel one-step synthesis of acrylonitrile butadiene rubber/bentonite nanocomposites with (3-Mercaptopropyl) trimethoxysilane as a compatilizer. Polym Composite 36:1693–1702

    Article  CAS  Google Scholar 

  25. Rajasekar R, Pal K, Heinrich G, Das A, Das CK (2009) Development of nitrile butadiene rubber-nanoclay composites with epoxidized natural rubber as compatibilizer. Mater Des 30:3839–3845

    Article  CAS  Google Scholar 

  26. Rajesh C, Manoj KC, Unnikrishnan G, Purushothaman E (2013) Dielectric properties of short nylon-6 fiber-reinforced NBR composites. Adv Polym Technol 321:E90–E102

    Article  Google Scholar 

  27. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Article  CAS  Google Scholar 

  28. Serra-Gomez R, Gonzalez-Gaitano G, Gonzalez-Benito J (2012) Composites based on EVA and barium titanate submicrometric particles: preparation by high-energy ball milling and characterization. Polym Composite 33:1549–1556

    Article  CAS  Google Scholar 

  29. Dasgupta M, Das Gupta S, Mukhopadhyay R, Bandyopadhyay A (2014) A new silica-rich material from waste fly ash—generation, characterisation and study of its effectiveness as a filler for rubber compounds. Polym Polym Compos 22:569–580

    CAS  Google Scholar 

  30. Ismail H, Kheong OW (2008) The effect of bis-(3-triethoxysilylpropyl) tetrasulfide, Si69 on properties of recycled poly (vinyl chloride)/acrylonitrile-butadiene rubber/fly ash (PVCr/NBR/FA) composites. J Reinf Plast Comp 27:1649–1661

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhang, J. Enhanced dielectric constant of acrylonitrile–butadiene rubber/barium titanate composites with mechanical reinforcement by nanosilica. Iran Polym J 26, 239–251 (2017). https://doi.org/10.1007/s13726-017-0511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0511-7

Keywords

Navigation