Skip to main content
Log in

Mixed morphology nanocrystalline cellulose from sugarcane bagasse fibers/poly(lactic acid) nanocomposite films: synthesis, fabrication and characterization

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Fully green nanocomposite films with excellent mechanical properties were prepared using mixed morphology nanocrystalline cellulose obtained by the dual acid hydrolysis of sugarcane bagasse fibers as the reinforcing and poly(lactic acid) (PLA) as the matrix member. Sugarcane bagasse fibers were subjected to alkaline pretreatment and bleaching for de-lignification and partial acid hydrolysis resulting in the formation of microcrystalline cellulose (MCC). Nanocrystalline cellulose (NCC) was obtained by the dual acid hydrolysis of MCC using sulfuric acid and hydrochloric acid followed by ultrasonication. The nanocomposite films were solution cast from chloroform in varied compositions. Mixed morphology and surface topography characteristics of NCC and PLA/NCC films were established using microscopic studies. Changes in the functionality and molecular chemistry with subsequent treatments in the fibers were evaluated using FTIR. NCC exhibited better dispersion characteristics, increased crystallinity and rendered thermally stable from room temperature to 230 °C. Degradation profiles of samples were obtained from thermogravimetry, while the reinforcing effects of NCC in PLA were established by analyzing crystallization characteristics from X-ray diffraction studies. X-ray diffraction was utilized to estimate the increase in crystalline constituents and their state. The increase in tensile strength of the films confirmed the increased and effective positive interaction at the matrix–filler interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  2. Aguirre EC, Franco FI, Samsuddin H, Fang X, Auras R (2016) Poly(lactic acid)-mass production, processing, industrial applications, and end of life. Adv Drug Deliver Rev. doi:10.1016/j.addr.2016.03.010

    Google Scholar 

  3. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  Google Scholar 

  4. Alsaheb RAA, Aladdin A, Othman NZ, Malek RA, Leng OM, Aziz R, Enshasy HE (2015) Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res 7:51–63

    Google Scholar 

  5. Valente TAM, Silva DM, Gomes PS, Fernandes MH, Santos JD, Sencadas V (2016) Effect of sterilization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. ACS Appl Mater Interfaces 8:3241–3249

    Article  CAS  Google Scholar 

  6. Bordes P, Pollet E, Averoéus L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  7. Martino VP, Jimenez A, Ruseckaite RA, Averous L (2011) Structure and properties of clay nano- biocomposites based on poly(lactic acid) plasticized with polyadipates. Polym Adv Technol 22:2206–2213

    Article  CAS  Google Scholar 

  8. Fortunati E, Puglia D, Monti M, Peponi L, Santulli C, Kenny JM, Torre L (2013) Extraction of cellulose nanocrystals from Phormium tenax fibers. J Polym Environ 21:319–328

    Article  CAS  Google Scholar 

  9. Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997

    Article  CAS  Google Scholar 

  10. Faruka O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  Google Scholar 

  11. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  12. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  13. Beltramino F, Roncero MB, Torres AL, Vidal T, Valls C (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23:1777–1789

    Article  CAS  Google Scholar 

  14. Dhar P, Bhardwaj U, Kumar A, Katiyar V (2014) In: Komolprasert V, Turowski P (eds) Food additives and packaging. ACS Symposium Series. Am Chem Soc, Washington

    Google Scholar 

  15. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  16. Jose C, Thomas MS, Deepa B, Poothan LA, Thomas S (2015) Adhesion and surface issues in biocomposites and bionanocomposites. In: Kl Mittal (ed) Progress in adhesion and adhesives. Scrivener Publishing, USA

    Google Scholar 

  17. Hammiche D, Boukerrou A, Djidjelli H, Grohens Y, Bendahou A, Seantier B (2016) Characterization of cellulose nanowhiskers extracted from alfa fiber and the effect of their dispersion methods on nanocomposite properties. J Adhes Sci Technol 30:1899–1912

    Article  CAS  Google Scholar 

  18. Lee HJ, Park SH, Kim SH (2013) Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide. Macromol Res 21:1218–1225

    Article  CAS  Google Scholar 

  19. Segal L, Creely JJ, Martin AE Jr, Conard CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  20. Hult LE, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibers. Cellulose 10:103–110

    Article  CAS  Google Scholar 

  21. Teeäär R, Serimaa R, Paakkari T (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 17:231–237

    Article  Google Scholar 

  22. Hermans PH, Weidinger A (1949) X-ray studies on the crystallinity of cellulose. J Polym Sci 4:135–144

    Article  CAS  Google Scholar 

  23. Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188

    Article  CAS  Google Scholar 

  24. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands of cellulose crystallinity and crystal lattice types. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  25. Schwanninger M, Hinterstoisser B, Gradinger C, Messner K, Fackler K (2004) Examination of spruce wood biodegraded by Ceriporiopsis subvermispora using near and mid infrared spectroscopy. J Near Infrared Spec 12:397–410

    Article  CAS  Google Scholar 

  26. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and polar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    Article  CAS  Google Scholar 

  27. Liu R, Yu H, Huang Y (2005) Structure and morphology of cellulose in wheat straw. Cellulose 12:25–34

    Article  Google Scholar 

  28. Pandey KK (1999) A study of chemical structure of soft and hard wood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975

    Article  CAS  Google Scholar 

  29. Sene CFB, McCann MC, Wilson RH, Grinter R (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol 106:1623–1631

    Article  CAS  Google Scholar 

  30. Bui NQ, Fongarland P, Rataboul F, Dartiguelongue C, Charon N, Vallée C, Essayem N (2016) FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: application to SC ethanol liquefaction of pine wood. Fuel Process Technol 134:378–386

    Article  Google Scholar 

  31. Ouatmane A, Provengano MR, Hafidi M, Senesi N (2000) Compost maturity assessment using calorimetry, spectroscopy and chemical analysis. Compost Sci Util 8:124–134

    Article  Google Scholar 

  32. Smith BC (1999) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton

    Google Scholar 

  33. Stewart D, Wilson HM, Hendra PJ, Morrison IM (1995) Fourier- transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J Agr Food Chem 43:2219–2225

    Article  CAS  Google Scholar 

  34. Michell AJ (1990) Second-derivative FTIR spectra of native celluloses. Carbohyd Res 197:53–60

    Article  CAS  Google Scholar 

  35. Kondo T (2005) In: Dumitriu S, Dekker M (eds) polysaccharides: structural diversity and functional versatility. CRC Press, Boca Raton

    Google Scholar 

  36. Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219

    CAS  Google Scholar 

  37. Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811

    Article  CAS  Google Scholar 

  38. Thomas M, Chauvelon G, Lahaye M, Saulnier L (2003) Location of sulfate groups on sulfoacetate derivatives of cellulose. Carbohyd Res 338:761–770

    Article  CAS  Google Scholar 

  39. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  40. Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47:2675–2686

    Article  CAS  Google Scholar 

  41. French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  42. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  43. Battegazzore D, Bocchini S, Frache A (2011) Crystallisation kinetics of poly(lactic acid)—talc composites. eXPRESS Polym lett 5:849–858

    Article  CAS  Google Scholar 

  44. Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stabil 98:651–658

    Article  CAS  Google Scholar 

  45. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stabil 97:2027–2036

    Article  CAS  Google Scholar 

  46. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  47. Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technol 100:6496–6504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun. M. Panicker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panicker, A.M., Rajesh, K.A. & Varghese, T.O. Mixed morphology nanocrystalline cellulose from sugarcane bagasse fibers/poly(lactic acid) nanocomposite films: synthesis, fabrication and characterization. Iran Polym J 26, 125–136 (2017). https://doi.org/10.1007/s13726-017-0504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0504-6

Keywords

Navigation